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Review for Exam 2
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Optimization conditions

• Definitions of Global and local minima
– We want to find a global but only afford to have local

• Unconstrained optimization problem
– KT condition (f’ = 0)

– 2nd order necessary condition (f’’ PSD)

– Sufficient condition (f’’ PD)

• Condition for global minimum
– Convex objective on convex constraint set

– When the obj and constraint set become convex?

• Equality constrained problem
– Introduce Lagrangian

– KT condition
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Optimization conditions

• Inequality constrained problem
– Introduce slack variables:

– KT condition

– Complementary slackness (igi = 0)

• 2nd-order necessary condition
– is P.S.D. for all feasible directions

• Sufficient condition
– is P.D. for all feasible directions
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Numerical Method for Optimization

• Basic algorithm
– Move from one design to another until can’t reduce objective 

further

– Need function values (objective & constraints) and their gradient

– Need to find search direction and step size

• Unconstrained problem
– Descent condition: New objective function must be smaller than 

previous one

– Line search: find ak that minimize the objective function for given 
direction

– Step size termination criterion: 
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Numerical Method for Optimization

• Search direction
– Search direction should reduce the objective function

– Different algorithms are available for different ways of 
calculating the search direction

• Steepest descent method
– The objective function can be reduced the most in the negative 

gradient direction

– Although this method seems to reduce f(x) the most, its 
convergence is slow due to consecutive orthogonal search 
directions

– This method converges slowly because the previous information is 
not used in finding the search direction 

   ( ) ( ) ( )k k kfd c

 ( 1) ( )k kc c



6

Numerical Method for Optimization

• Newton method
– Very fast convergence when the initial design is close to the 

optimum design (quadratic convergence)

– Need Hessian information

– If the Hessian in P.D., then new design will reduce f(x)

– Difficulty in convergence when the Hessian changes its sign

– Often line search is included (modified Newton method)

• Conjugate gradient method
– Use previous gradient information

• Quasi-Newton method
– Calculating Hessian is expensive -> Approximate Hessian or its 

inverse using gradient information

– BFGS or DFP update

– Maintain P.D. property of updated Hessian
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Constrained Optimization

• Constrained optimization problem
– Can convert to the unconstrained optimization problem

– Can solve directly with constraints

• SUMT (Sequential Unconstrained Minimization Tech)
– Penalize the objective function with violated constraints by 

multiplying with penalty parameter

– Gradually increase the penalty parameter

– When r becomes too big, Hessian becomes ill-conditioned

• Lagrange multiplier method
– Minimize Lagrangian with x and 
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Constrained Optimization

• Direct method
– Minimize the objective function with given feasible set

– Can either follow interior or boundary of the feasible set

– Epsilon-active strategy: for numerical purpose, consider a 
constraint active when it approaches zero

• Sequential linear programming (SLP)
– Linearize the objective and constraints at the current design and 

solve for design change

• Quadratic programming subproblem (QP)
– Quadratic objective with linear constraints for solving design 

change: convex problem and global optimum

• SLP and QP are used to calculate design change x, 
followed by line search for step size
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Constrained Optimization

• Feasible direction method
– Combine both feasible direction (satisfying constraints) and usable 

direction (reducing objective)

• Constrained quasi-Newton method (Sequential quadtratic
programming, SQP)
– Solve the QP subproblem with approximate Hessian

– Linear search for step size
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Reliability Analysis and Design

• Study basic terminology of statistics (PDF, CDF, Normal…)

• Conditional probability

• Transformation of RV (X -> Y)
– For given statistical property of X, calculate property of Y

– Linear transformation (Y = aX + b)

• Nonlinear transformation (Y = g(X))
– Linear approximation at mean: good when g is almost linear and 

uncertainty in X is small

– Equivalent linearization: minimize expected value of square error
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Transformation of Distribution

• Monotonic function Y = g(X)

• CDF

• PDF

• General nonlinear function
– Need to find a region and integrate fX on that region
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Reliability Analysis

• Limit state g(X) = 0; Failed state g(X) < 0

• Probability of failure (PF) and reliability index (HL)

• For general nonlinear limit state

• Standard normal random variable with linear limit state
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Approximate Reliability Analysis

• First Order Reliability Analysis (FORM)
– Transform all input RVs (X) into SNRVs (U)

– Find the closest point of g(U) = 0 from the origin

– Approximate g(U) = 0 by tangent line at the closest point gL(U) = 0

– Reliability index is the distance from origin to the closest point

• Monte Carlo Simulation (MCS)
– General random samples of input RVs (N)

– Calculate the limit states samples using input RVs

– Count the number of limit states less than zero (NF)

,
F

F MCS
N

P
N



14

Reliability0based Design Optimization (RBDO)

• Reliability appears as a constraint in optimization

• Reliability index approach 

– Good for reliability analysis, but expensive and unstable when 
reliability is high or the limit state is highly nonlinear

• Performance measure approach

– Not suitable for assessing reliability (t is fixed), but efficient and 
stable for design optimization

• Sensitivity of reliability can be calculated eaily

Optimum: *( )pG u


