#### WEIGHTED RESIDUAL METHOD

1

## INTRODUCTION

- Direct stiffness method is limited for simple 1D problems
- PMPE is limited to potential problems
- FEM can be applied to many engineering problems that are governed by a differential equation
- Need systematic approaches to generate FE equations
  - Weighted residual method
  - Energy method
- Ordinary differential equation (second-order or fourth-order) can be solved using the weighted residual method, in particular using Galerkin method

## **EXACT VS. APPROXIMATE SOLUTION**

#### Exact solution

- Boundary value problem: differential equation + boundary conditions
- Displacements in a uniaxial bar subject to a distributed force p(x)

$$\frac{d^{2}u}{dx^{2}} + p(x) = 0, \ 0 \le x \le 1$$

$$u(0) = 0$$

$$\frac{du}{dx}(1) = 1$$
Boundary conditions

- Essential BC: The solution value at a point is prescribed (displacement or kinematic BC)
- Natural BC: The derivative is given at a point (stress BC)
- **Exact solution** u(x): twice differential function
- In general, it is difficult to find the exact solution when the domain and/or boundary conditions are complicated
- Sometimes the solution may not exists even if the problem is well defined

2

## **EXACT VS. APPROXIMATE SOLUTION cont.**

## Approximate solution

- It satisfies the essential BC, but not natural BC
- The approximate solution may not satisfy the DE exactly

- Residual: 
$$\frac{d^2\tilde{u}}{dx^2} + \rho(x) = R(x)$$

Want to minimize the *residual* by multiplying with a weight *W* and integrate over the domain

$$\int_0^1 R(x)W(x)dx = 0$$
 Weight function

- If it satisfies for any W(x), then R(x) will approaches zero, and the approximate solution will approach the exact solution
- Depending on choice of W(x): least square error method, collocation method, Petrov-Galerkin method, and Galerkin method

## **GALERKIN METHOD**

• Approximate solution is a linear combination of trial functions

$$\tilde{u}(x) = \sum_{i=1}^{N} c_i \phi_i(x)$$
Trial function

- Accuracy depends on the choice of trial functions
- The approximate solution must satisfy the essential BC
- Galerkin method
  - Use N trial functions for weight functions

$$\int_{0}^{1} R(x)\phi_{i}(x)dx = 0, \quad i = 1,...,N$$

5

## **GALERKIN METHOD** cont.

- Galerkin method cont.
  - Integration-by-parts: reduce the order of differentiation in u(x)

$$\frac{d\tilde{u}}{dx}\phi_i\bigg|_0^1 - \int_0^1 \frac{d\tilde{u}}{dx} \frac{d\phi_i}{dx} dx = -\int_0^1 p(x)\phi_i(x) dx, \quad i = 1,...,N$$

Apply natural BC and rearrange

$$\int_0^1 \frac{d\phi_i}{dx} \frac{d\tilde{u}}{dx} dx = \int_0^1 p(x)\phi_i(x) dx + \frac{du}{dx}(1)\phi_i(1) - \frac{du}{dx}(0)\phi_i(0), \quad i = 1, ..., N$$

- Same order of differentiation for both trial function and approx. solution
- Substitute the approximate solution

$$\int_0^1 \frac{d\phi_i}{dx} \sum_{j=1}^N c_j \frac{d\phi_j}{dx} dx = \int_0^1 p(x)\phi_i(x) dx + \frac{du}{dx}(1)\phi_i(1) - \frac{du}{dx}(0)\phi_i(0), \quad i = 1, ..., N$$

## GALERKIN METHOD cont.

- · Galerkin method cont.
  - Write in matrix form

$$\sum_{j=1}^{N} K_{ij} c_j = F_i, \quad i = 1,...,N \qquad \Longrightarrow \qquad \boxed{ \begin{bmatrix} \mathbf{K} \end{bmatrix} \{ \mathbf{c} \} = \{ \mathbf{F} \} \\ (N \times N)(N \times 1) = (N \times 1) \end{bmatrix} }$$

$$K_{ij} = \int_0^1 \frac{d\phi_i}{dx} \frac{d\phi_j}{dx} dx$$

$$F_i = \int_0^1 p(x)\phi_i(x)dx + \frac{du}{dx}(1)\phi_i(1) - \frac{du}{dx}(0)\phi_i(0)$$

- Coefficient matrix is symmetric;  $K_{ij} = K_{ji}$
- N equations with N unknown coefficients

7

## **EXAMPLE1**

Differential equation

$$\frac{d^2u}{dx^2} + 1 = 0, 0 \le x \le 1$$

$$u(0) = 0$$

$$\frac{du}{dx}(1) = 1$$
Boundary conditions

Trial functions

$$\phi_1(x) = x$$
  $\phi'_1(x) = 1$   
 $\phi_2(x) = x^2$   $\phi'_2(x) = 2x$ 

Approximate solution (satisfies the essential BC)

$$\tilde{u}(x) = \sum_{i=1}^{2} c_i \phi_i(x) = c_1 x + c_2 x^2$$

· Coefficient matrix and RHS vector

$$\begin{split} K_{11} &= \int_0^1 \left(\phi_1'\right)^2 dx = 1 \\ K_{12} &= K_{21} = \int_0^1 \left(\phi_1'\phi_2'\right) dx = 1 \\ K_{22} &= \int_0^1 \left(\phi_2'\right)^2 dx = \frac{4}{3} \end{split} \qquad F_1 &= \int_0^1 \phi_1(x) dx + \phi_1(1) - \frac{du}{dx}(0) \phi_1(0) = \frac{3}{2} \\ F_2 &= \int_0^1 \phi_2(x) dx + \phi_2(1) - \frac{du}{dx}(0) \phi_2(0) = \frac{4}{3} \end{split}$$

## **EXAMPLE1** cont.

Matrix equation

$$[\mathbf{K}] = \frac{1}{3} \begin{bmatrix} 3 & 3 \\ 3 & 4 \end{bmatrix}$$
  $\{\mathbf{F}\} = \frac{1}{6} \begin{bmatrix} 9 \\ 8 \end{bmatrix}$   $\begin{bmatrix} \mathbf{c} \\ -\frac{1}{2} \end{bmatrix}$ 

• Approximate solution

$$\tilde{u}(x)=2x-\frac{x^2}{2}$$

 Approximate solution is also the exact solution because the linear combination of the trial functions can represent the exact solution

9

## **EXAMPLE2**

Differential equation

$$\frac{d^{2}u}{dx^{2}} + x = 0, \quad 0 \le x \le 1$$

$$u(0) = 0$$

$$\frac{du}{dx}(1) = 1$$
Boundary conditions

Trial functions

$$\phi_1(x) = x$$
  $\phi'_1(x) = 1$   
 $\phi_2(x) = x^2$   $\phi'_2(x) = 2x$ 

• Coefficient matrix is same, force vector:  $\{F\} = \frac{1}{12} \begin{bmatrix} 16 \\ 15 \end{bmatrix}$ 

$$\{\mathbf{c}\} = [\mathbf{K}]^{-1}\{\mathbf{F}\} = \begin{cases} \frac{19}{12} \\ -\frac{1}{4} \end{cases} \quad \Longrightarrow \tilde{u}(x) = \frac{19}{12}x - \frac{x^2}{4}$$

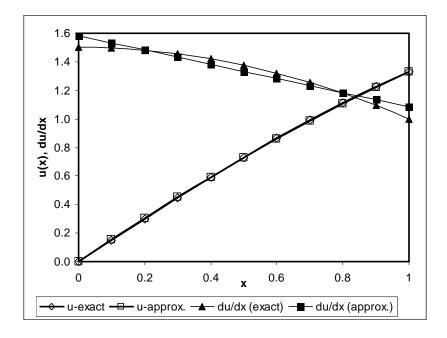
Exact solution

$$u(x)=\frac{3}{2}x-\frac{x^3}{6}$$

 The trial functions cannot express the exact solution; thus, approximate solution is different from the exact one

## **EXAMPLE2** cont.

• Approximation is good for u(x), but not good for du/dx



11

## HIGHER-ORDER DIFFERENTIAL EQUATIONS

• Fourth-order differential equation

$$\left(\frac{d^4w}{dx^4}-p(x)=0,\quad 0\leq x\leq L\right)$$

- Beam bending under pressure load

• Approximate solution

$$\tilde{w}(x) = \sum_{i=1}^{N} c_i \phi_i(x)$$

w(0) = 0  $\frac{dw}{dx}(0) = 0$ Essential BC

 $\frac{d^2w}{dx^2}(L) = M$   $\frac{d^3w}{dx^3}(L) = -V$ Natural BC

Weighted residual equation (Galerkin method)

$$\int_0^L \left( \frac{d^4 \tilde{w}}{dx^4} - p(x) \right) \phi_i(x) dx = 0, \quad i = 1, ..., N$$

 In order to make the order of differentiation same, integration-by-parts must be done twice

## HIGHER-ORDER DE cont.

· After integration-by-parts twice

$$\frac{d^{3}\tilde{w}}{dx^{3}}\phi_{i}\Big|_{0}^{L} - \frac{d^{2}\tilde{w}}{dx^{2}}\frac{d\phi_{i}}{dx}\Big|_{0}^{L} + \int_{0}^{L} \frac{d^{2}\tilde{w}}{dx^{2}}\frac{d^{2}\phi_{i}}{dx^{2}}dx = \int_{0}^{L} p(x)\phi_{i}(x)dx, \quad i = 1,...,N$$

$$\implies \int_0^L \frac{d^2 \tilde{w}}{dx^2} \frac{d^2 \phi_i}{dx^2} dx = \int_0^L p(x) \phi_i(x) dx - \frac{d^3 \tilde{w}}{dx^3} \phi_i \bigg|_0^L + \frac{d^2 \tilde{w}}{dx^2} \frac{d \phi_i}{dx} \bigg|_0^L, \quad i = 1, ..., N$$

Substitute approximate solution

$$\int_{0}^{L} \sum_{j=1}^{N} c_{j} \frac{d^{2} \phi_{j}}{dx^{2}} \frac{d^{2} \phi_{i}}{dx^{2}} dx = \int_{0}^{L} p(x) \phi_{i}(x) dx - \frac{d^{3} \tilde{w}}{dx^{3}} \phi_{i} \bigg|_{0}^{L} + \frac{d^{2} \tilde{w}}{dx^{2}} \frac{d \phi_{i}}{dx} \bigg|_{0}^{L}, \quad i = 1, ..., N$$

- Do not substitute the approx. solution in the boundary terms
- Matrix form

$$K_{ij} = \int_0^L \frac{\mathrm{d}^2 \phi_i}{\mathrm{d}x^2} \frac{\mathrm{d}^2 \phi_j}{\mathrm{d}x^2} \mathrm{d}x$$

$$F_{i} = \int_{0}^{L} p(x)\phi_{i}(x)dx - \frac{d^{3}w}{dx^{3}}\phi_{i} \bigg|_{0}^{L} + \frac{d^{2}w}{dx^{2}}\frac{d\phi_{i}}{dx} \bigg|_{0}^{L}$$
13

## **EXMAPLE**

$$\frac{d^4w}{dx^4} - 1 = 0, \quad 0 \le x \le L \qquad \frac{d^2w}{dx^2}(1) = 2 \quad \frac{d^3w}{dx^3}(1) = -1$$

$$w(0) = 0 \quad \frac{dw}{dx}(0) = 0$$

$$\frac{d^2w}{dx^2}(1) = 2 \frac{d^3w}{dx^3}(1) = -1$$

Two trial functions

$$\phi_1 = x^2$$
,  $\phi_2 = x^3$   $\phi_1'' = 2$ ,  $\phi_2'' = 6x$ 

Coefficient matrix

$$K_{11} = \int_0^1 (\phi_1'')^2 dx = 4$$

$$K_{12} = K_{21} = \int_0^1 (\phi_1''\phi_2'') dx = 6 \qquad \qquad [K] = \begin{bmatrix} 4 & 6 \\ 6 & 12 \end{bmatrix}$$

$$K_{22} = \int_0^1 (\phi_2'')^2 dx = 12$$

## **EXAMPLE** cont.

• RHS

$$F_{1} = \int_{0}^{1} x^{2} dx + V \phi_{1}(1) + \frac{d^{3}w(0)}{dx^{3}} \phi_{1}(0) + M \phi'_{1}(1) - \frac{d^{2}w(0)}{dx^{2}} \phi'_{1}(0) = \frac{16}{3}$$

$$F_{2} = \int_{0}^{1} x^{3} dx + V \phi_{2}(1) + \frac{d^{3}w(0)}{dx^{3}} \phi_{2}(0) + M \phi'_{2}(1) - \frac{d^{2}w(0)}{dx^{2}} \phi'_{2}(0) = \frac{29}{4}$$

• Approximate solution

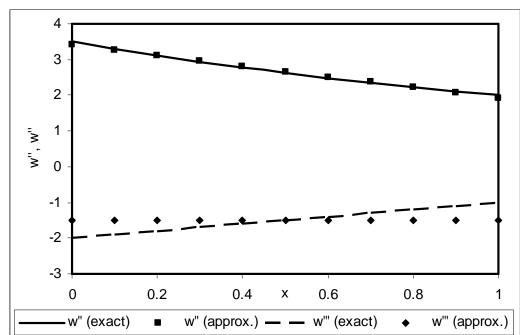
$$\{\mathbf{c}\} = [\mathbf{K}]^{-1}\{\mathbf{F}\} = \begin{cases} \frac{41}{24} \\ -\frac{1}{4} \end{cases} \qquad \Longrightarrow \qquad \tilde{w}(x) = \frac{41}{24}x^2 - \frac{1}{4}x^3$$

Exact solution

$$w(x) = \frac{1}{24}x^4 - \frac{1}{3}x^3 + \frac{7}{4}x^2$$

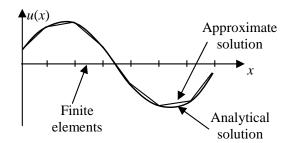
15





## FINITE ELEMENT APPROXIMATION

- Domain Discretization
  - Weighted residual method is still difficult to obtain the trial functions that satisfy the essential BC
  - FEM is to divide the entire domain into a set of simple sub-domains (finite element) and share nodes with adjacent elements
  - Within a finite element, the solution is approximated in a simple polynomial form

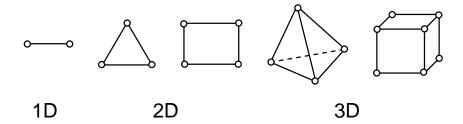


 When more number of finite elements are used, the approximated piecewise linear solution may converge to the analytical solution

17

## FINITE ELEMENT METHOD cont.

• Types of finite elements

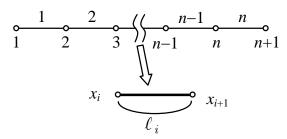


Variational equation is imposed on each element.

$$\int_0^1 \Box dx = \int_0^{0.1} \Box dx + \int_{0.1}^{0.2} \Box dx + \dots + \int_{0.9}^1 \Box dx$$
One element

#### TRIAL SOLUTION

- Solution within an element is approximated using simple polynomials.



-i-th element is composed of two nodes:  $x_i$  and  $x_{i+1}$ . Since two unknowns are involved, linear polynomial can be used:

$$\tilde{u}(x) = a_0 + a_1 x, \quad x_i \leq x \leq x_{i+1}$$

- The unknown coefficients,  $a_0$  and  $a_1$ , will be expressed in terms of nodal solutions  $u(x_i)$  and  $u(x_{i+1})$ .

19

## TRIAL SOLUTION cont.

Substitute two nodal values

$$\begin{cases} \tilde{u}(x_i) = u_i = a_0 + a_1 x_i \\ \tilde{u}(x_{i+1}) = u_{i+1} = a_0 + a_1 x_{i+1} \end{cases}$$

- Express  $a_0$  and  $a_1$  in terms of  $u_i$  and  $u_{i+1}$ . Then, the solution is approximated by

$$\tilde{u}(x) = \underbrace{\frac{x_{i+1} - x}{L^{(i)}}}_{N_i(x)} u_i + \underbrace{\frac{x - x_i}{L^{(i)}}}_{N_{i+1}(x)} u_{i+1}$$

– Solution for i-th element:

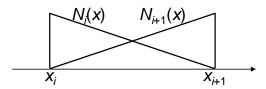
$$\tilde{u}(x) = N_i(x)u_i + N_{i+1}(x)u_{i+1}, \quad x_i \leq x \leq x_{i+1}$$

-  $N_i(x)$  and  $N_{i+1}(x)$ : Shape Function or Interpolation Function

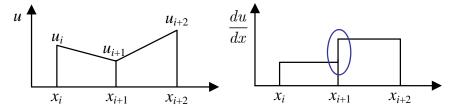
## TRIAL SOLUTION cont.

#### **Observations**

- Solution u(x) is interpolated using its nodal values  $u_i$  and  $u_{i+1}$ .
- $N_i(x)$  = 1 at node  $x_i$ , and =0 at node  $x_{i+1}$ .



The solution is approximated by piecewise linear polynomial and its gradient is constant within an element.



Stress and strain (derivative) are often averaged at the node.

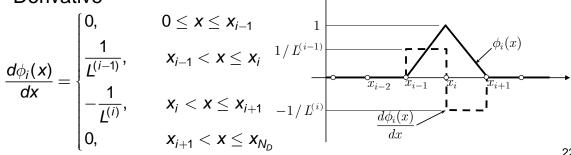
## **GALERKIN METHOD**

- Relation between interpolation functions and trial functions
  - 1D problem with linear interpolation

$$\tilde{u}(x) = \sum_{i=1}^{N_D} u_i \phi_i(x) \qquad \phi_i(x) = \begin{cases} 0, & 0 \le x \le x_{i-1} \\ N_i^{(i-1)}(x) = \frac{x - x_{i-1}}{L^{(i-1)}}, & x_{i-1} < x \le x_i \\ N_i^{(i)}(x) = \frac{x_{i+1} - x}{L^{(i)}}, & x_i < x \le x_{i+1} \\ 0, & x_{i+1} < x \le x_N \end{cases}$$

 Difference: the interpolation function does not exist in the entire domain, but it exists only in elements connected to the node

**Derivative** 



## **EXAMPLE**

Solve using two equal-length elements

$$\frac{d^2u}{dx^2} + 1 = 0, 0 \le x \le 1$$

$$u(0) = 0$$

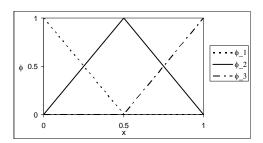
$$\frac{du}{dx}(1) = 1$$
Boundary conditions

- Three nodes at x = 0, 0.5, 1.0; displ at nodes =  $u_1$ ,  $u_2$ ,  $u_3$
- Approximate solution  $\tilde{u}(x) = u_1\phi_1(x) + u_2\phi_2(x) + u_3\phi_3(x)$

$$\phi_{1}(x) = \begin{cases} 1 - 2x, & 0 \le x \le 0.5 \\ 0, & 0.5 < x \le 1 \end{cases} \qquad \phi_{2}(x) = \begin{cases} 2x, & 0 \le x \le 0.5 \\ 2 - 2x, & 0.5 < x \le 1 \end{cases}$$

$$\phi_{3}(x) = \begin{cases} 0, & 0 \le x \le 0.5 \\ -1 + 2x, & 0.5 < x \le 1 \end{cases}$$

$$\phi_2(x) = \begin{cases} 2x, & 0 \le x \le 0.5 \\ 2 - 2x, & 0.5 < x \le 1 \end{cases}$$



## EXAMPLE cont.

Derivatives of interpolation functions

$$\frac{d\phi_1(x)}{dx} = \begin{cases}
-2, & 0 \le x \le 0.5 \\
0, & 0.5 < x \le 1
\end{cases}$$

$$\frac{d\phi_2(x)}{dx} = \begin{cases}
2, & 0 \le x \le 0.5 \\
-2, & 0.5 < x \le 1
\end{cases}$$

$$\frac{d\phi_3(x)}{dx} = \begin{cases}
0, & 0 \le x \le 0.5 \\
2, & 0.5 < x \le 1
\end{cases}$$

Coefficient matrix

$$K_{12} = \int_0^1 \frac{d\phi_1}{dx} \frac{d\phi_2}{dx} dx = \int_0^{0.5} (-2)(2) dx + \int_{0.5}^1 (0)(-2) dx = -2$$

$$K_{22} = \int_0^1 \frac{d\phi_2}{dx} \frac{d\phi_2}{dx} dx = \int_0^{0.5} 4 dx + \int_{0.5}^1 4 dx = 4$$

$$F_1 = \int_0^{0.5} 1 \times (1 - 2x) dx + \int_{0.5}^1 1 \times (0) dx + \frac{du}{dx} (1) \phi_1(1) - \frac{du}{dx} (0) \phi_1(0) = 0.25 - \frac{du}{dx} (0)$$

$$F_2 = \int_0^{0.5} 2x dx + \int_{0.5}^1 (2 - 2x) dx + \frac{du}{dx} (1) \phi_2(1) - \frac{du}{dx} (0) \phi_2(0) = 0.5$$

## **EXAMPLE** cont.

Matrix equation

$$\begin{bmatrix} 2 & -2 & 0 \\ -2 & 4 & -2 \\ 0 & -2 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} F_1 \\ 0.5 \\ 1.25 \end{bmatrix}$$
 Consider it as unknown

Striking the 1st row and striking the 1st column (BC)

$$\begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix} \begin{Bmatrix} u_2 \\ u_3 \end{Bmatrix} = \begin{Bmatrix} 0.5 \\ 1.25 \end{Bmatrix}$$

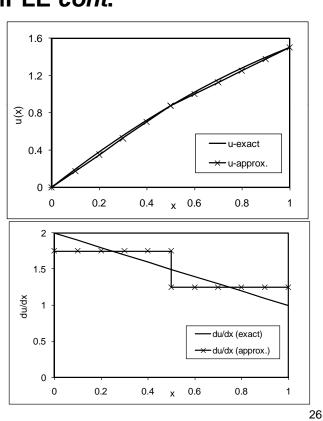
- Solve for  $u_2 = 0.875$ ,  $u_3 = 1.5$
- Approximate solution

$$\tilde{u}(x) = \begin{cases} 1.75 x, & 0 \le x \le 0.5 \\ 0.25 + 1.25 x, & 0.5 \le x \le 1 \end{cases}$$

- Piecewise linear solution

## **EXAMPLE** cont.

- Solution comparison
- Approx. solution has about 8% error
- Derivative shows a large discrepancy
- Approx. derivative is constant as the solution is piecewise linear

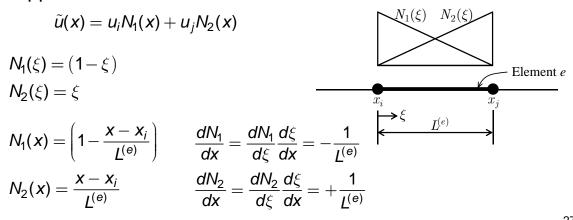


## FORMAL PROCEDURE

- Galerkin method is still not general enough for computer code
- Apply Galerkin method to one element (e) at a time
- Introduce a local coordinate

$$x = x_i(1-\xi) + x_j\xi$$
 
$$\xi = \frac{x - x_i}{x_j - x_i} = \frac{x - x_j}{L^{(e)}}$$

· Approximate solution within the element



## FORMAL PROCEDURE cont.

Interpolation property

$$N_1(x_i) = 1, \quad N_1(x_j) = 0$$
  $\tilde{u}(x_i) = u_i$   
 $N_2(x_i) = 0, \quad N_2(x_i) = 1$   $\tilde{u}(x_j) = u_j$ 

• Derivative of approx. solution

$$\frac{d\tilde{u}}{dx} = u_i \frac{dN_1}{dx} + u_j \frac{dN_2}{dx}$$

$$\frac{d\tilde{u}}{dx} = \left| \frac{dN_1}{dx} \frac{dN_2}{dx} \right| \left\{ \begin{array}{l} u_1 \\ u_2 \end{array} \right\} = \frac{1}{L^{(e)}} \left| \frac{dN_1}{d\xi} \frac{dN_2}{d\xi} \right| \left\{ \begin{array}{l} u_1 \\ u_2 \end{array} \right\}$$

· Apply Galerkin method in the element level

$$\int_{x_i}^{x_j} \frac{dN_i}{dx} \frac{d\tilde{u}}{dx} dx = \int_{x_i}^{x_j} p(x)N_i(x)dx + \frac{du}{dx}(x_j)N_i(x_j) - \frac{du}{dx}(x_i)N_i(x_i), \quad i = 1, 2$$

## FORMAL PROCEDURE cont.

Change variable from x to ξ

$$\frac{1}{L^{(e)}} \int_0^1 \frac{dN_i}{d\xi} \left[ \frac{dN_1}{d\xi} \quad \frac{dN_2}{d\xi} \right] d\xi \cdot \left\{ u_1 \atop u_2 \right\} = L^{(e)} \int_0^1 p(x) N_i(\xi) d\xi$$
$$+ \frac{du}{dx} (x_j) N_i(1) - \frac{du}{dx} (x_i) N_i(0), \quad i = 1, 2$$

- Do not use approximate solution for boundary terms
- Element-level matrix equation

$$[\mathbf{k}^{(e)}] \{ \mathbf{u}^{(e)} \} = \{ \mathbf{f}^{(e)} \} + \begin{cases} -\frac{du}{dx} (x_i) \\ +\frac{du}{dx} (x_j) \end{cases}$$

$$\{ \mathbf{f}^{(e)} \} = L^{(e)} \int_0^1 p(x) \{ N_1(\xi) \\ N_2(\xi) \} d\xi$$

$$[\mathbf{k}^{(e)}] = \frac{1}{L^{(e)}} \int_0^1 \left[ \frac{dN_1}{d\xi} \right]^2 \frac{dN_1}{d\xi} \frac{dN_2}{d\xi} d\xi \right] d\xi = \frac{1}{L^{(e)}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$20$$

## FORMAL PROCEDURE cont.

- Need to derive the element-level equation for all elements
- Consider Elements 1 and 2 (connected at Node 2)

$$\begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}^{(1)} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix} = \begin{Bmatrix} f_1 \\ f_2 \end{Bmatrix}^{(1)} + \begin{Bmatrix} -\frac{du}{dx}(x_1) \\ +\frac{du}{dx}(x_2) \end{Bmatrix}$$
$$\begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}^{(2)} \begin{Bmatrix} u_2 \\ u_3 \end{Bmatrix} = \begin{Bmatrix} f_2 \\ f_3 \end{Bmatrix}^{(2)} + \begin{Bmatrix} -\frac{du}{dx}(x_2) \\ +\frac{du}{dx}(x_3) \end{Bmatrix}$$

Assembly

$$\begin{bmatrix} k_{11}^{(1)} & k_{12}^{(1)} & 0 \\ k_{21}^{(1)} & k_{22}^{(1)} + k_{11}^{(2)} & k_{12}^{(2)} \\ 0 & k_{21}^{(2)} & k_{22}^{(2)} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1^{(1)} \\ f_2^{(1)} + f_2^{(2)} \\ f_3^{(2)} \end{bmatrix} + \begin{bmatrix} -\frac{du}{dx}(x_1) & \text{unknown term} \\ 0 & \frac{du}{dx}(x_3) \end{bmatrix}$$

#### FORMAL PROCEDURE cont.

• Assembly of  $N_E$  elements  $(N_D = N_E + 1)$ 

$$\begin{bmatrix} k_{11}^{(1)} & k_{12}^{(1)} & 0 & \dots & 0 \\ k_{21}^{(1)} & k_{22}^{(1)} + k_{11}^{(2)} & k_{12}^{(2)} & \dots & 0 \\ 0 & k_{221}^{(2)} & k_{22}^{(2)} + k_{11}^{(2)} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & k_{21}^{(N_E)} & k_{21}^{(N_E)} & k_{22}^{(N_E)} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_N \\ (N_D \times 1) \end{bmatrix} = \begin{bmatrix} f_1^{(1)} \\ f_2^{(1)} + f_2^{(2)} \\ f_3^{(2)} + f_3^{(3)} \\ \vdots \\ f_N^{(N_E)} \\ (N_D \times 1) \end{bmatrix} + \begin{bmatrix} -\frac{du}{dx}(x_1) \\ 0 \\ 0 \\ \vdots \\ +\frac{du}{dx}(x_N) \end{bmatrix}$$

$$[K]{q} = {F}$$

 Coefficient matrix [K] is singular; it will become non-singular after applying boundary conditions

24

## **EXAMPLE**

• Use three equal-length elements

$$\frac{d^2u}{dx^2} + x = 0, \quad 0 \le x \le 1 \quad u(0) = 0, \quad u(1) = 0$$

· All elements have the same coefficient matrix

$$\begin{bmatrix} \mathbf{k}^{(e)} \end{bmatrix}_{2 \times 2} = \frac{1}{L^{(e)}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}, \quad (e = 1, 2, 3)$$

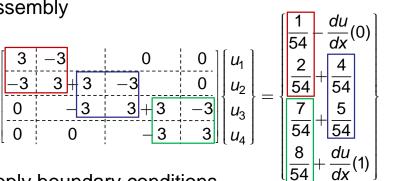
- Change variable of p(x) = x to  $p(\xi)$ :  $p(\xi) = x_i(1-\xi) + x_j\xi$
- RHS

$$\begin{split} \{\mathbf{f}^{(e)}\} &= L^{(e)} \int_{0}^{1} p(\mathbf{x}) \left\{ \begin{matrix} N_{1}(\xi) \\ N_{2}(\xi) \end{matrix} \right\} d\xi = L^{(e)} \int_{0}^{1} \left[ x_{i} (1 - \xi) + x_{j} \xi \right] \left\{ \begin{matrix} 1 - \xi \\ \xi \end{matrix} \right\} d\xi \\ &= L^{(e)} \left\{ \begin{matrix} \frac{x_{i}}{3} + \frac{x_{j}}{6} \\ \frac{x_{i}}{6} + \frac{x_{j}}{3} \end{matrix} \right\}, \quad (e = 1, 2, 3) \end{split}$$

## **EXAMPLE** cont.

• RHS cont. 
$$\begin{cases} f_1^{(1)} \\ f_2^{(1)} \end{cases} = \frac{1}{54} \begin{cases} 1 \\ 2 \end{cases}, \qquad \begin{cases} f_2^{(2)} \\ f_3^{(2)} \end{cases} = \frac{1}{54} \begin{cases} 4 \\ 5 \end{cases}, \qquad \begin{cases} f_3^{(3)} \\ f_4^{(3)} \end{cases} = \frac{1}{54} \begin{cases} 7 \\ 8 \end{cases}$$

Assembly



- Apply boundary conditions
  - Deleting 1st and 4th rows and columns

$$\begin{bmatrix} 6 & -3 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \qquad u_2 = \frac{4}{81}$$

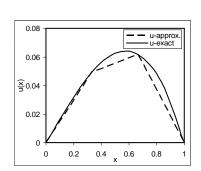
$$u_3 = \frac{5}{81}$$

Element 1 Element 2 Element 3

## **EXAMPLE** cont.

Approximate solution

$$\tilde{u}(x) = \begin{cases} \frac{4}{27}x, & 0 \le x \le \frac{1}{3} \\ \frac{4}{81} + \frac{1}{27}\left(x - \frac{1}{3}\right), & \frac{1}{3} \le x \le \frac{2}{3} \\ \frac{5}{81} - \frac{5}{27}\left(x - \frac{2}{3}\right), & \frac{2}{3} \le x \le 1 \end{cases}$$



**Exact solution** 

$$u(x) = \frac{1}{6}x(1-x^2)$$

- Three element solutions are poor
- Need more elements

## **CONVERGENCE**

- Weighted residual of 2*m*-th order DE has highest derivatives of order *m*
- With exact arithmetic, the following is sufficient for convergence to true solution (φ) as mesh is refined:
  - Complete polynomials of at least order m inside element
  - Continuity across element boundaries up to derivatives of order *m-1*
  - Element must be capable of representing exactly uniform  $\phi$  and uniform derivatives up to order m-1.
- Beam: 4-th order DE (m = 2)
  - Complete polynomials:  $v(x) = a_0 + a_1x + a_2x^2 + a_3x^3$
  - Continuity on v(x) and dv(x)/dx across element boundaries
  - Uniform  $v(x) = a_0$
  - Uniform derivative  $dv(x)/dx = a_1$

Beam elements will converge upon refinement

35

## **RIGID BODY MOTION**

Rigid body motion for CST can lead to non zero strains!

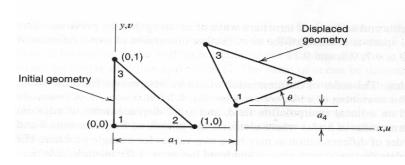


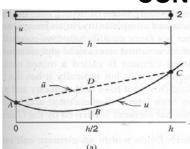
Figure 4.9-1. Constant strain triangle element subjected to a rigid body motion consisting of translations  $a_1$  and  $a_4$  in the x and y directions, and rotation  $\theta$  about node 1.

Rigid body motion

$$\begin{cases} u \\ v \end{cases} = \begin{bmatrix} a_1 & \cos\theta - 1 & -\sin\theta \\ a_4 & \sin\theta & \cos\theta - 1 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \end{bmatrix}$$

• The normal strain  $\mathcal{E}_x = \frac{\partial u}{\partial x} = \cos \theta - 1 \neq 0$ 

# **CONVERGENCE RATE**



Quadratic curve u=a+bx+cx<sup>2</sup> modeled by linear FE  $u_{fo}=a+(b+ch)x$ 

Maximal error at mid-point D

$$e_D = u_D - u_B = \frac{u_A + u_C}{2} - u_B = \frac{ch^2}{4} = \frac{h^2}{8}u''$$

Maximal gradient error is maximal at ends

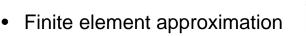
$$e_{A}^{'} = \frac{u_{C} - u_{A}}{h} - b = hc = \frac{h}{2}u^{"}$$

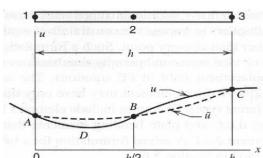
Error in function converges faster than in derivative!

## QUADRATIC ELEMENT FOR CUBIC SOLUTION

Exact solution

$$u = a + bx + cx^2 + dx^3$$





$$\tilde{u} = a + \left(b - \frac{1}{2}dh^2\right)x + \left(c + \frac{3}{2}dh\right)x^2$$

Maximal errors

$$e_D = -\frac{3dh^3}{64} = -\frac{h^3}{128}u'''$$
 and  $e_A'' = -\frac{dh^2}{2} = -\frac{h^2}{12}u'''$ 

# **CONVERGENCE RATE**

- Useful to know convergence rate
  - Estimate how much to refine
  - Detect modeling crimes
  - Extrapolate
- Most studies just do series of refinements if anything

วด