WEIGHTED RESIDUAL METHOD
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INTRODUCTION

Direct stiffness method is limited for simple 1D problems
PMPE is limited to potential problems

FEM can be applied to many engineering problems that are
governed by a differential equation

Need systematic approaches to generate FE equations

— Weighted residual method

— Energy method

Ordinary differential equation (second-order or fourth-order)

can be solved using the weighted residual method, in
particular using Galerkin method
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EXACT VS. APPROXIMATE SOLUTION

» Exact solution

Boundary value problem: differential equation + boundary conditions
Displacements in a uniaxial bar subject to a distributed force p(x)

2
aU L px)=00<x<1
dx
u(0)=0

Boundary conditions
Mo=1 ’

Essential BC: The solution value at a point is prescribed (displacement
or kinematic BC)

Natural BC: The derivative is given at a point (stress BC)

Exact solution u(x): twice differential function

In general, it is difficult to find the exact solution when the domain
and/or boundary conditions are complicated

Sometimes the solution may not exists even if the problem is well
defined
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EXACT VS. APPROXIMATE SOLUTION cont.

« Approximate solution

It satisfies the essential BC, but not natural BC
The approximate solution may not satisfy the DE exactly
Residual: g2

—— + P(X) = R(x)

dx
Want to minimize the residual by multiplying with a weight \W and
integrate over the domain

flR(x)W(x)dx —0 [—Weight function
0 4

If it satisfies for any W(x), then R(x) will approaches zero, and the
approximate solution will approach the exact solution

Depending on choice of W(x): least square error method, collocation
method, Petrov-Galerkin method, and Galerkin method
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GALERKIN METHOD

» Approximate solution is a linear combination of trial functions

N
[G(X) = Zcifbk(x)w
i=1

— Accuracy depends on the choice of trial functions
— The approximate solution must satisfy the essential BC

o Galerkin method
— Use N trial functions for weight functions

folR(x)gzﬁi(x)dx —0, i=1..N

Trial function

o(x)dx =0, i =1...,N

:>f[ >+ P(X)

:>f (b,(x)dx_—f p(X)¢r (x)dx, i =1...,N
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GALERKIN METHOD cont.

» Galerkin method cont.
— Integration-by-parts: reduce the order of differentiation in u(x)

d_L]
dx

_ Olg_i%dx:—j;lp(x)gg(x)dx, i =1...N

— Apply natural BC and rearrange

1d¢; dd

. d—xd—xdx _ folp(X)cﬁ. (x)dx +3—)l:(1)¢| 1) —g—i(o)gbl ©), i=1..,N

— Same order of differentiation for both trial function and approx. solution
— Substitute the approximate solution

do.
fld¢' O%’dx: 15 P06 0 + S @ (1)~ S (0)6,(0), T =1
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GALERKIN METHOD cont.

» Galerkin method cont.
— Write in matrix form

N
Sy, =F, i=1..N = [[K] fc} = {F}}
=1

d¢| dd)] dx

Kij = o dx dx

(NxN)(Nx1)  (Nx1)

= [ 006 (dx + o (06 1) — 5 (0)6 0)

— Coefficient matrix is symmetric;

Kij = K]I

— N equations with N unknown coefficients
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EXAMPLE1

 Differential equation

d—£+1 0,0<x<1

dx?

u(0) =

du Boundary conditions
KW=

Trial functions
H1(X) = X Pl(x) =
Pa(X) = X2 Pa(x) =

» Approximate solution (satisfies the essential BC)
2

u(x) = Zci@ (X) = C1X + Cpx?
i—1

» Coefficient matrix and RHS vector

K]_l:j;]_(QS{)de:l
Kiz :K21:f1<¢1/¢§)dle

F = fol¢1(x)dx + (D) — ?Ku@@(o) _°
F, = f;lﬁbz(x)dx + ¢p(1) — %@(o) _z
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EXAMPLEL1L cont.

Matrix equation

2
[m:lf ﬂ {H:%P} — m%qmlwk{_J
2

3|13 4 8

Approximate solution

2

- X
u(x) =2x — —
(%) 5
— Approximate solution is also the exact solution because the linear

combination of the trial functions can represent the exact solution
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EXAMPLE2
Differential equation Trial functions
du o _o o<x<1 A0=x  G9=1
CIX2 o 2 / o
Po(X) = X $2(X) = 2X

u(0)=20

Boundary conditions
—<>] '

. . . . 1 16
Coefficient matrix is same, force vector: {F} = E{ 15}

19

2

@%4M*FF4¥J[::$MMZSX—%

4
Exact solution

3
u(x)zzx—?

— The trial functions cannot express the exact solution; thus,
approximate solution is different from the exact one




EXAMPLEZ2 cont.

» Approximation is good for u(x), but not good for du/dx

u(x), du/dx

0 0.2 04 0.6 0.8 1

—6— u-exact —8— u-approx. —&— du/dx (exact) —— du/dx (approx.)

HIGHER-ORDER DIFFERENTIAL EQUATIONS

: . : w(0)=0
» Fourth-order differential equation dw Essential BC
d 4w d_x(o) =0
—7 —bhb(X)=0, 0<x<L ) ~
dx d—W(L) M
— Beam bending under pressure load d;(Z Natural BC
« Approximate solution ?jTV;’(L) = -V

N
W(x) = citr(x)
i=1
» Weighted residual equation (Galerkin method)

IL[ﬂ— p(X)]¢.(X)dX =0, i=1..,N

o dx*
— In order to make the order of differentiation same, integration-by-parts
must be done twice




HIGHER-ORDER DE cont.

» After integration-by-parts twice

L ~ L
d3w d2wW de Ld*W d?g,
3¢" dx zd;i 0 dx2 d(é _f p(X)¢ (x)dx, i =1...,N
LdAW d2 ddw |" dwwde|
= Jy S F = [ p00a0dx— 7 3¢0 B ax| =N
» Substitute approximate solution
LoL  d2g; d2g, L ddw |- dAwdeg | .
Jy 0 g & = Jy Po0a0osx—Gsal + TR 11N

— Do not substitute the approx. solution in the boundary terms
» Matrix form

- LA,
[[K] fc} = {F}} dx o’

NxN Nx1 Nx1

L ddw |- dAwdg |
= p(X)Q(X)dX—d?Q‘()*'d?—

dxo

EXMAPLE
« Fourth-order DE w(0) = 0 ?j_")‘(’(o):o
AW 10, 0<x<L  dW dw
dx* T T ge T

« Two trial functions
¢ =X ¢p=x H=2 &=
» Coefficient matrix
Ky = j;l(¢1”)2dx _4
Kiz = Ko = fol(ﬁl%é')dx =6 > [K]= ‘
Koy = fol((pg’)z dx =12

4 6
6 12




EXAMPLE cont.
RHS

3 2

F = folxzdx V) + d°w(0 570) + Mal(D) — d VZ(O 50) :%
s 2

Py = [ Ve, + T 0) + Mas(n) - Toe(0) = 2

Approximate solution
41

{c}:[Krl{F}z{i} = W)=tk 1y

4
Exact solution
7 2

1 1
w(x) = zx"’ —§x3 + X

EXAMPLE cont.

4

3 i

2 i

1 i

0 i

'1 N — — — — —
* . ¢ O & — —6 "o . . ¢

2 - —— "

'3 I I I I
0 0.2 0.4 X 0.6 0.8 1

w" (exact) m W' (approx.) — — wW"(exact) e W" (approx.)




FINITE ELEMENT APPROXIMATION

 Domain Discretization

— Weighted residual method is still difficult to obtain the trial functions
that satisfy the essential BC

— FEM is to divide the entire domain into a set of simple sub-domains
(finite element) and share nodes with adjacent elements

— Within a finite element, the solution is approximated in a simple
polynomial form

Au(x)

Approximate

/ solution

| / | | | / —
Finite
elements

Analytical
solution

— When more number of finite elements are used, the approximated
piecewise linear solution may converge to the analytical solution

FINITE ELEMENT METHOD cont.

» Types of finite elements

1D 2D

« Variational equation is imposed on each element.

folﬂdx _ foo'lﬂdx +f(ffDdx +-~~+f01.9Ddx
AN

One element




TRIAL SOLUTION

Solution within an element is approximated using simple polynomials.
1 2 s n—-1 n
[e, % O O
1 2 ﬁ&lﬂ_l n n+1

\_/ Xi+1
¢

i-th element is composed of two nodes: x; and x;,,. Since two
unknowns are involved, linear polynomial can be used:

U(x) =ag +ax, X <X < X4

The unknown coefficients, a, and a,, will be expressed in terms of
nodal solutions u(x;) and u(X;,,).

TRIAL SOLUTION cont.

Substitute two nodal values
{ u(x;) =u; = ap +ax;
U(Xj41) = Ujq = 89 + X4

Express a, and a, in terms of u; and u,,,. Then, the solution is
approximated by

~ X; — X X — X;
U(X): |+l_ ui + i

10 TR
[ —_—
N; (x) Ni1(X)

Solution for i-th element:

u(x) = Ni()u; + Nipa(Xui g, X <x <Xy

— N(x) and N.,,(x): Shape Function or Interpolation Function




* Observations

TRIAL SOLUTION cont.

— Solution u(x) is interpolated using its nodal values u; and u;,,.
— N;(x) =1 at node x;, and =0 at node Xxi,;.

I:N-(X) Ni+1(X):|

X Xir1

>

— The solution is approximated by piecewise linear polynomial and its
gradient is constant within an element.

u
U;

d_u
dzx

Ui+2

Ui+

)

\]

Xi

>

Xi+1 Xi+2

Xj

>

Xi+1 Xj+2

— Stress and strain (derivative) are often averaged at the node.

GALERKIN METHOD

* Relation between interpolation functions and trial functions
— 1D problem with linear interpolation

Np
) =Y ug(x) A=
i=1

0, 0< X< X4
i1 X=X

Ni(l )(X) = L(i——£)’ Xig < X < X

NO(x) = 'JLT, Xi <X < Xjgg

0, Xip1 < X < Xy,

— Difference: the interpolation function does not exist in the entire
domain, but it exists only in elements connected to the node

» Derivative

0

1
dei(x) _ L0’
dx | 1
L)

\O’

y

0<x<X_4 1
(i—1) - &i()
Xi—l < X S Xi 1/L | :
T Ti—o Tiq ?Iz ;$i+1 >
Xi < X< Xji1 _q/7( .-
/D g (x)_—
dx

Xitg <X < Xy,




EXAMPLE

» Solve using two equal-length elements

d2u U(O)ZO
—2+1:0,0§X§1 du
dx =1

] Boundary conditions
» Three nodes at x = 0, 0.5, 1.0; displ at nodes = u,, u,, U
» Approximate solution u(x) = uigi(X) + Uxgz(X) + Uzgz(X)

1-2x, 0<x<0.5 2Xx, 0<x<0.5
0, 05<x<1 2—-2%X, 05<x<1
0, 0<x<05

X) = T ,
#a(X) {—1+ 2x, 05<x<1 g

¢i(X) = { P2 (X) = {

05 ¢ —02
o . / s

EXAMPLE cont.

» Derivatives of interpolation functions
dqbl(X)_{—Z, 0<x<05 d¢2(x)_{2, 0<x<05

dx 0, 0.5<x<1 dx -2,05<x<1
dos(x) [0, 0<x <05
dx |2, 05<x<1

o Coefficient matrix

Ky, — [t929%2 4 I ** C2)2)dx + I 1.5 (0)(—2)dx = —2

o dx dx
_ 1%% _ 0.5 1 _
Koy = 0 o dxdx_j; 4dx—|—‘/;.54dx_4
e RHS

=l "1k (1— 2x)dx + [ 1.51>< ©O)dx + @b (1) — 3—3(0)@(0) —025- 3—)‘:(0)

0.5 1
F, :j; 2xdx+j;)'5(2—2x)dX+d—u 2(1)_d_u 2(0) = 0.5




EXAMPLE cont.

Matrix equation

2 -2 0 |[u F Consider it as unknown
-2 4 —-2Hu,t=105
0 -2 2 ||ug 1.25

Striking the 1st row and striking the 1st column (BC)
[4 -2 {uz}_{OB}
—2 2 |us| |1.25

Solve for u, =0.875,u; = 1.5

Approximate solution
5 1.75x, 0<x<05
u(x) =
0.25+1.25x, 05<x<1

— Piecewise linear solution

EXAMPLE cont.

Solution comparison 16
Approx. solution has about | ,, |
8% error
. . %08 1
Derivative shows a large |3
discrepancy 04 1 —uexact
. . . —> U-approx.
Approx. derivative is .
constant as the solution is 0 02 04 , 06 08 1
piecewise linear 3
\
15
\
05 | —du/dx (exact)
= du/dx (approx.)
0




FORMAL PROCEDURE

» Galerkin method is still not general enough for computer code

» Apply Galerkin method to one element (e) at a time

e |Introduce a local coordinate

X—X  X—X
X =X(1-&)+ x;¢ g:X__XI.: |_(e)I
J |

» Approximate solution within the element

G(x) = UiN5(X) + U;Ny(x) Ni(&) Na(g
) = (1_ 5) . Element e
No(8) = ¢ . .

—¢ o
N(X)_ 1_X_Xi le_ledg_ 1
R IO i T AN TO)

_ XX dN, dN,d¢ 1

"0 =T T d @

FORMAL PROCEDURE cont.

 Interpolation property
Ni(xi) =1 Ny(x;)=0 u(x;) = u;
No(x) =0, Ny(x;)=1 u(x;) = u;
» Derivative of approx. solution

di _, dNy | dNy
dx ' dx I dx

di_[dN; Ny [[] 1 ]
u, L® U,

dx [ dx dx
» Apply Galerkin method in the element level

4 dN; di
x, dx dx

dN;,  dN,
d§¢ d¢

dx = f):' P(X)N; (x)dx +3_)L:(Xj)Ni(Xj)_g_i(xi)Ni(Xi)’ =12




FORMAL PROCEDURE cont.

» Change variable from x to &

fldN le dN2
L(®) d¢  d¢

+&(Xj IN; (1) — &(Xi N;i(0), 1 =12

de- { } L@ [ pOON, ()

— Do not use approximate solution for boundary terms
* Element-level matrix equation

du
~ g i) e L 1(8)
KEYu) = {19} + +S§(X) 1) =1 [o00] 1 s
dx
[le]Z dN; dN,
[k<e>]_— de dg de |, 11 _1l
22 L9YJ0lgN, dN, [dN2 ]2 L9-1 1
d¢ d¢ d¢

FORMAL PROCEDURE cont.

* Need to derive the element-level equation for all elements
« Consider Elements 1 and 2 (connected at Node 2)

du
1 ——
s k[ {ul}: H‘ﬁ ax "V
Koy K u f du
21 R22 2 2 "‘&(XZ)
du
2 ——
Ky ko | ){ z}:{fz}(2)+ = 0%2)
Kop Koo U3 fa d_U(X)
d 3
* Assembly
Cdu Vanished
Kk k® 0 |fu, £® ——(xl) unknown term
) KD KD {u = {12 ] o
(2) (2) (2) du
0 k21 kzz f3 d_x(xs) ‘




FORMAL PROCEDURE cont.

Assembly of Ng elements (Np = Ng + 1)

1 1
@
1 1 2
Kk
0 K
0 0

0 Uy
2
kiz) 0 Uz
@ k@ 0 |usf-
(Ne) | .(Ng) [u
0 k21 = kZZE (ND'\>I<1)
(NpxNp)

£
£ 4152
£ + 1

féNE)

© (Npx1)

du
_&(Xl)

0
0
du
+&(XN)
(Npx1)

Coefficient matrix [K] is singular; it will become non-singular
after applying boundary conditions

EXAMPLE
» Use three equal-length elements
2
d—‘;+x:o, 0<x<1 u(0) =0, u(l) = 0
dx

All elements have the same coefficient matrix
11 -1 [3 -3
22 | ®|-1 1] |-3 3

[k(e)

1, (e=123)

Change variable of p(x) = x to p(&): p(&) = X (L= &) + x;¢

« RHS
e\ _ (e 1 Nl(g) (e 1 1_5
(=19 | p(X){NZ(é)}dﬁ =19 | Tx <1—£>+XJ£J{ ¢ }dﬁ
X X
@3 8l (e=123)
Xi X
53




EXAMPLE cont.

* RHScont. (1@ 1t £2) 1[4
(0] 54|2) 2| 54|5]

(] 17
(| 548

» Assembl , .
y 1| du
54| dx )
: : : X Element 1
3_3 : 0 P 0 1y 2 4 | )
L3l s o9 Do lju|_Ealfsal | ST
o 43 sz glu| |75 e
o: 0 { 431 3||u, 54| 154
8| du
o 5_4+d_x(1)
» Apply boundary conditions
— Deleting 1st and 4th rows and columns
6 —3{u2}_1{1} : Uz = 35
[—3 6 |lug] 9(2 Ug = 2
L 33
EXAMPLE cont.
« Approximate solution
[ 4 1
_— <X <=
27 X 0 SXS 3 0.08 — — u-approx.
. 4 1 1 1 2 - = u-exact
=y — —_— —_ - < < - ’ -
u(x) 81+27[X 3]’ 3=X=3 Q TN
£0.04 1 \
5 5 2) 2 \
o1 A= -y =< < 0.02 1 \
81 27[ 3]’ g=sx=l \
« Exact solution o 0z o 0o oo 1

u(x):%x(l—xz)

— Three element solutions are poor
— Need more elements




CONVERGENCE

derivatives of order m

Weighted residual of 2m-th order DE has highest

With exact arithmetic, the following is sufficient for

convergence to true solution (¢) as mesh is refined:
— Complete polynomials of at least order m inside element
— Continuity across element boundaries up to derivatives

of order m-1

— Element must be capable of representing exactly
uniform ¢ and uniform derivatives up to order m-1.

* Beam: 4-th order DE (m = 2)

— Complete polynomials: v(X) = a, + a;X + a,x? + ax3
— Continuity on v(x) and dv(x)/dx across element boundaries

— Uniform v(x) = a,
— Uniform derivative dv(x)/dx = a,

Beam elements will converge
upon refinement

RIGID BODY MOTION

y.v Displaced
geometry

o

(1,0) ‘ :
l

ul & cosf-1
v[ |a,  sing

ou
« The normal strain 5x=&:C05‘9—1¢0

aa

* Rigid body motion

Figure 4.9-1. Constant
strain triangle element
subjected to a rigid
body motion
consisting of
translations @, and a,
in the x and y
directions, and rotation
6 about node 1.

) 1
—Sing
X
cosf-1

y




CONVERGENCE RATE

Quadratic curve u=a+bx+cx?
modeled by linear FE
U,=a+(b+ch)x

|
0 hi2 h

. Maximal error at mid-point D
U, +U, chf K .
€, =Uy —Ug = Uy =——=—LU
2 4 8

« Maximal gradient error is maximal at ends

egzyiﬁgﬂ—bzhc:gu"

« Error in function converges faster than in derivative!

QUADRATIC ELEMENT FOR CUBIC SOLUTION

1¢ O $ 3

Exact solution

U=a+bx+cx?+dx> >

Finite element approximation 0 w2 h

l]:a+(b—£dh2jx+(c+§dhjx2
2 2

Maximal errors

e LA L u and e ——d—hz——h—zu”'
° 64 128 o2 12




CONVERGENCE RATE

» Useful to know convergence rate
— Estimate how much to refine
— Detect modeling crimes
— Extrapolate

* Most studies just do series of refinements if anything




