
Composite Structures 77 (2007) 280–287

www.elsevier.com/locate/compstruct
Analysis of sandwich TPS panel with functionally graded foam
core by Galerkin method

H. Zhu, B.V. Sankar *

Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611-6250, USA

Available online 2 September 2005
Abstract

The method of Fourier analysis is combined with the Galerkin method for solving the two-dimensional elasticity equations for a
sandwich thermal protection system (TPS) insulation panel with foam core subjected to transverse loads. The variation of the
Young�s modulus through the thickness is given by a polynomial in the thickness coordinate and the Poisson�s ratio is assumed
to be constant. The Fourier series method is used to reduce the partial differential equations to a pair of ordinary differential equa-
tions, which are solved by using the Galerkin method. The method will be useful in analyzing functionally graded TPS structures
with arbitrary variation of thermomechanical properties in the thickness direction. The analysis was also performed using sandwich
plate theory. Significant differences were found in the results suggesting that the sandwich theory may not be suitable for the analysis
of thick sandwich TPS panel.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Thermal protection systems (TPS) on reusable launch
vehicles (RLV) have to be designed such that the maxi-
mum temperature and stresses of the RLV tank struc-
ture is kept below a specified safe limit. A significant
component of the total vehicle weight in addition to
structural weight of the tanks is the weight of the ther-
mal protection system. Sandwich structures can offer
high stiffness with relatively much weight saving com-
pared to widely used laminated structures. A recent
study of TPS modeling and performance issues per-
formed by Blosser et al. [1,2] has shown that currently
existing Saffil foam-filled TPS tile weighs 5.85–19.3 kg/
m2 (1.2–3.96 lb/ft2), while the structural weight ranges
from 4.64 to 8.54 kg/m2 (0.95–1.75 lb/ft2). The enclosed
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volume of the TPS tile is filled with the Saffil (fibrous
foam type) insulation. Since the Saffil insulation is flex-
ible and cannot be attached directly, it needs encapsula-
tion in a foil and the secondary TPS support structure.
Metallic foams, which have low density, relatively low
conductivity and some load-bearing ability, seem to be
a promising candidate for insulation material besides
Saffil insulation, if their relative density profiles are de-
signed appropriately.

Functionally graded foams can improve the perfor-
mance of the insulation. For steady state heat flow,
Venkataraman et al. [3] optimized the solidity profile
of the foam in order to minimize the transmitted heat
for a given mass or minimize the thickness for a specified
transmitted heat. It should be noted that solidity or vol-
ume fraction of foam is defined as the ratio between the
volume of the solid material and the volume of foam. In
a second paper Zhu et al. [4] minimized the TPS mass
for specified heat transfer. Later a transient problem
was solved in which the maximum structural tempera-
ture of a two layer insulation was minimized by varying
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the solidity profile for a given total thickness and mass
[5]. The two layers were assumed homogeneous with
solidity being constant in each layer. It is shown that
the cooler inner layer of optimal design has high solidity,
while the hotter outer layer has low solidity. This is in
contrast to the steady-sate optimum, where the solidity
profile is the reverse.

The objective of this paper is to develop a thermal-
structural analysis of a sandwich TPS panel subjected
to transient heat conduction during reentry. The mate-
rial properties such as Young�s modulus, yield strength,
thermal conductivity and coefficient of thermal expan-
sion are assumed to be temperature dependent. Hence
approximate methods such as finite difference method
for heat conduction and Galerkin method for structural
analysis have to be used. The sandwich panel is divided
into four elements (two face sheets and two layers of
core with different solidities). An elasticity solution is de-
rived for each layer based on the procedures developed
by Sankar et al. [6,7]. The solution for strains and stres-
ses in the entire sandwich panel is obtained by enforcing
the compatibility of tractions and displacements at the
interfaces between each element. The Fourier series
method is used to reduce the partial differential equa-
tions to a pair of ordinary differential equations, which
are solved by using the Galerkin method. For the pur-
pose of comparison, the panel is also analyzed by one-
dimensional plate theory.
2. Analysis

In this section we identify the necessary information
and modeling details required to perform structural
analysis of the sandwich TPS panel. The heat transfer
in the TPS panel is assumed to be one-dimensional.
The finite width effects of the TPS insulation and the
heat shorts resulting from the support structure around
the perimeter of the TPS tile are ignored. The structural
mass on the inside will correspond to the mass of the
stiffened panel shell used for the RLV tank construction.
The insulation itself is made of open cell titanium foam
material.
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Fig. 1. Schematic of the cross-section of the sandwich
The heat transfer in foams proceeds by three modes:
conduction through the solid materials, conduction in
the gas filling this foam and radiation inside the foam.
The model used to calculate the heat transfer coefficient
in the foam is discussed in Venkataraman et al. [3]. To
minimize radiation it requires higher solidity foams
(smaller foam pore sizes) while to minimize conduction
it needs low solidity foams (large foam pore sizes). Since
there is a temperature gradient through the insulation,
an optimum insulation requires different solidities in dif-
ferent regions. Optimum density profiles of metallic
foam insulations that minimize heat transmitted to the
inside under transient steady-state heat transfer condi-
tions are presented in Venkataraman et al. [3].

Fig. 1 shows a schematic of the cross-section of the
simplified sandwich TPS panel. The length of the panel
is 0.4572 m (18 in.). The top facesheet is made of homo-
geneous titanium plate with thickness 0.5 mm. The foam
core is divided into two layers with total thickness
90 mm (3.54 in.). The solidity in each layer of foam core
can vary continuously. The foam is idealized as having
rectangular cells of uniform size. The variation in solid-
ity is achieved by tailoring the cell size while keeping the
strut diameter fixed at 0.05 mm (0.002 in.). The struc-
tural mass on the inside will correspond to the mass of
the stiffened panel shell used for the RLV tank construc-
tion which is made of aluminum with thickness 2.2 mm
(about 0.0866 in.). The areal density of structure is
6.1 kg/m2 (1.25 lb/ft2). The temperature dependent
material properties of titanium and aluminum are the
same as the material properties used in Ref. [8].
3. Structural analysis of the TPS panel

The TPS panel is assumed to be simply supported
and in a state of plane strain normal to the z–x plane
(one-dimensional plate). The governing equations are
formulated for each layer. The solutions of strains and
stresses of entire sandwich are obtained by enforcing
the compatibility displacements and continuity of trac-
tions at the interfaces between each layer, which is anal-
ogous to assembling element stiffness matrices in FEM
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Fig. 2. Functionally graded beam subjected to symmetric loading.
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analysis. We will derive the elasticity solution for a typ-
ical layer first.

3.1. Analysis of a single layer

Consider a functionally graded one-dimensional plate
of height h and length L as shown in Fig. 2. The bound-
ary conditions at the two edges of the plate, x = 0 and L,
are similar to that of a simply supported plate. We as-
sume that the functionally graded material is isotropic
at every point and the Poisson�s ratio m is a constant
through the thickness. The variation of Young�s modu-
lus E in the thickness direction is given by a polynomial
in z as

EðzÞ ¼ E0 a1 þ a2

z
h

� �
þ a3

z
h

� �2

þ a4

z
h

� �3
� �

ð1Þ

There are normal and shear tractions applied on both
top and bottom surfaces. The tractions are assumed to
be symmetric about the centerline (x = L/2):

p1 ¼ P 1 sin nx

t1 ¼ T 1 cos nx

p2 ¼ P 2 sin nx

t2 ¼ T 2 cos nx

n ¼ np
L

n ¼ 1; 3; 5; . . . ð2Þ

The temperature distribution h(x,z) at bottom sur-
face is also assumed symmetric about the centerline
(x = L/2). The temperature variation in the thickness
direction follows same pattern for each x, which can
be expressed in polynomial as

hðx; zÞ ¼
X1
n¼1

T n sin nx

" #
�
X4

k¼1

dkzk�1

" #

n ¼ np
L

n ¼ 1; 3; 5; . . . k ¼ 1; 2; 3; 4 ð3Þ

We will solve the problem for one value of n. Let

hnkðx; zÞ ¼
X4

k¼1

dkT nzk�1 sin nx ð4Þ
Assume the displacements are in the form of

uðx; zÞ ¼ UðzÞ cos nx

wðx; zÞ ¼ W ðzÞ sin nx
ð5Þ

The strains are derived as

exx ¼ �Un sin nx

ezz ¼ W 0 sin nx

czz ¼ ðU 0 þ W nÞ cos nx

ð6Þ

Assuming that the principal material directions coincide
with the x and z axes, the constitutive equations are:
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where [C] can be expressed as
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Eq. (6) can be rewritten as
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where the b�s can be expressed as
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Substituting Eq. (6) into Eq. (9), we have,

rxx ¼ SxðzÞ sin nx

rzz ¼ SzðzÞ sin nx

sxz ¼ T zðzÞ cos nx

ð11Þ

where

Sx ¼ ð�c11Unþ c13W 0 � dkT nzk�1bxðzÞÞ
Sz ¼ ð�c13Unþ c33W 0 � dkT nzk�1bzðzÞÞ
T z ¼ c55ðU 0 þ W nÞ

ð12Þ

The governing equilibrium equations are (body forces
are neglected):

orxx

ox
þ osxz

oz
¼ 0

osxz

ox
þ orzz

oz
¼ 0

ð13Þ
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Substituting Eq. (11) into Eq. (13), we obtain,

nSxðzÞ þ T 0zðzÞ ¼ 0

S0zðzÞ � nT zðzÞ ¼ 0
ð14Þ

Eq. (14) is solved by Galerkin method by assuming four
basis functions:

UðzÞ ¼ cj/jðzÞ
W ðzÞ ¼ bj/jðzÞ j ¼ 1; 2; 3; 4

ð15Þ

where

/1ðzÞ ¼ 1; /2ðzÞ ¼ z; /3ðzÞ ¼ z2; /4ðzÞ ¼ z3 ð16Þ
Substituting the approximate solution in the govern-

ing differential equations, we obtain the residuals. The
residuals are minimized by equating their weighted aver-
ages to zero:Z h

0

ðnSx þ T 0zÞ/iðzÞdz ¼ 0; i ¼ 1; 2; 3; 4Z h

0

ðS0z þ T znÞ/iðzÞdz ¼ 0; i ¼ 1; 2; 3; 4

ð17Þ

Using integration by parts we can rewrite Eq. (17) asZ h

0
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ð18Þ

Substituting for Sx(z), Sz(z) and Tz(z) from Eq. (12)
into Eq. (18) and using the approximate solution for
U(z) and W(z) in Eq. (15) we obtain:
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The boundary conditions at both top and bottom sur-
face are shown as following:

At top surface

t1 ¼ T 1 cos nx

p1 ¼ P 1 sin nx
ð22Þ

Hence we have

SzðhÞ ¼ P 1

T zðhÞ ¼ T 1

ð23Þ

At bottom surface

t2 ¼ T 2 cos nx

p2 ¼ P 2 sin nx
ð24Þ

which yields

Szð0Þ ¼ �P 2

T zð0Þ ¼ �T 2

ð25Þ

Substituting Eqs. (23) and (25) into Eq. (20), [f] in Eq.
(20) can be rewritten as
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or

f ¼ UP þM ð27Þ
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Eq. (15) can be expanded as

U 1

W 1

U 2

W 2

2
6664

3
7775 ¼

0 0 0 0 1 h h2 h3

1 h h2 h3 0 0 0 0
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or

U ¼ HD ð29Þ
Now we have three equatipns (19), (27) and (29).

From these three equations, we obtain,

U ¼ HK�1½UP þM � ¼ K�P þM� ð30Þ
or

P ¼ SU � R ð31Þ
where

S ¼ ½K���1

R ¼ ½K���1M�
ð32Þ
3.2. Analysis of the whole panel

Assume displacements are in the form:

pi ¼ P i sin nx

ti ¼ T i cos nx i ¼ 1; 2; 3; 4; 5

n ¼ np
L

n ¼ 1; 3; 5; . . . ð33Þ

For given temperature distribution in each layer:

P ðiÞ ¼ SðiÞU ðiÞ � RðiÞ ð34Þ
In order to satisfy equilibrium, the contribution of the
different tractions at each interface should sum to zero.
Enforcing the balance of force and displacement at the
interface, we got global stiff matrix SG:
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ð35Þ
Solving the above Eq. (35), we can obtain the displace-
ment field for each layer. The displacement field and
the constitutive equations can be used to obtain the
stress filed in each layer.

Sankar and Tzeng [7] derived the one-dimensional
plate theory following the Euler–Bernoulli beam
assumption. He also neglected the normal stresses in
thickness direction rzz. We followed a similar procedure
to derive a sandwich beam theory for the composite
sandwich panel and compare this solution with the
approximate elasticity solution by Galerkin method.
4. Numerical results

The analysis procedures described in the preceding
section was used to calculate the stresses in a TPS panel
during the reentry of the vehicle. Based on our previous
work of minimizing the maximum temperature of a
structure [4], we found that the cooler inner layer of
the optimal two-layer design has high solidity, while
the hotter outer layer has low solidity. Hence we
vary the solidity of foam linearly from 0.11 at bottom
to 0.01 at top surface, which is called as linear design.
It should be noted that the elastic constants of metal
foams depend on the foam solidity. Choi and Sankar
[9] derived an expression for the Young�s modulus of a
cellular solid as

Ef ¼
1

3
qEs ð36Þ

where q is the solidity and the subscripts f and s, respec-
tively, refer to the homogenized foam and the strut
material. In our study, the heat flux and pressure on
the vehicle during reentry are obtained from Blosser
et al. [1,2]. The heat flux varies significantly over the sur-
face. For our study we choose a location on the wind-
ward surface referred to as station 1199 (STA 1199) as
a representative point for the point design [8].

The stress variations with respect to time at various
locations of the sandwich TPS panel with length
0.4572 m (18 in.) are presented in Figs. 3–6. It can be
noted that both sandwich and Galerkin solutions agree
well with each other, which means sandwich theory
can provide relatively accurate results for slender beam
(L/H = 4.9). We also compared the two solutions for
beam with length L = 225 mm (9 in.) (L/H = 2.46).
The results are shown in Figs. 7–10. The maximum dif-
ference between theses two solution for stresses in the
structure is 18%, which suggests that the sandwich the-
ory may not be suitable for the analysis of thick sand-
wich TPS panel.

We also investigate the performance of functionally
graded foam insulation for transient heat transfer condi-
tion by comparing it with the uniform solidity foam
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insulation. For the purpose of comparison, the problem
of a uniform foam design with same foam insulation
weight, same top facesheet and structure is also solved.
Figs. 11 and 12 show the temperature histories at top
facesheet and structure, respectively. It is shown in
Fig. 12 that maximum structural temperature can be re-
duced by 30 K by linearly varying the insulation foam
solidity. This is achieved by increasing the top facesheet
temperature faster to radiate out more heat for linear
design compared with uniform design, as shown in
Fig. 11. The histories of stress ratio, which is defined
as the ratio between the stresses in each layer and tem-
perature-dependent yield stress, are also plotted for each
layer in Figs. 13–16. These four plots indicate that the
maximum stress ratio in the base structure and foam
core can be reduced 25% or more by linearly varying
the foam solidity with only 5% increase in stress ratio
in the top face sheet.
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Fig. 14. History of normal stress (rxx) in top half core of uniform and
linear design (L = 18 in.).
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Fig. 15. History of normal stress (rxx) in bottom half core of uniform
and linear design (L = 18 in.).
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Fig. 16. History of normal stress (rxx) in structure of uniform and
linear design (L = 18 in.).
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5. Conclusions and future work

The analysis procedures developed in this paper will
be useful in the optimization of the multilayer TPS
structure subjected to temperature and stress con-
straints. The results suggest that classical lamination
theory may not be suitable for the analysis of thick
sandwich TPS panel and more accurate plate theories,
e.g., higher order theories or new sandwich plate theo-
ries, need to be developed. One of the major issues in
the TPS for RLVs is that the temperature attains the
maximum after the vehicle has landed when the mechan-
ical loads are minimum or almost do not exist. On the
other hand during the beginning phase of the reentry
the mechanical loads are high but the thermal loads
are low. This situation offers an opportunity to optimize
the TPS and minimize the mass. This problem will be
considered in the future after developing more accurate
sandwich plate theories for this purpose.
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