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model. The inputs to the model are the geometric parameters required to model the
repeating unit cell and tensile strength of the foam ligament or strut. Cracks are created
by removing certain number of cells pertaining to a crack length. The FE model consists
of a local micro-scale region surrounding the crack tip. For an assumed stress intensity fac-

Keywords: . tor, the displacements along the boundary of the local model are calculated based on linear
Cellular materials . . . . R .

Foams elastic fracture mechanics for orthotropic materials. The stresses in the ligaments ahead of
Fracture toughness the crack tip calculated from this micro-model in conjunction with the tensile strength of
Micromechanics the strut material are used to predict fracture toughness. A parametric study with different
Tetrakaidecahedral unit cell micro-model sizes and different crack lengths is performed to check for convergence of

predicted Mode-I, Mode-II and mixed mode fracture toughness values. The effect of apply-
ing rotations as additional boundary conditions along with translational displacement
boundary conditions on the predicted fracture toughness values is also studied.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cellular materials are made up of a network of beam or plate-like structures. There are a number of cellular materials that
occur in nature, such as honeycombs, wood, bone, and cork. Cellular materials can offer high thermal resistance, low density,
and high energy-absorption. Foams are a class of cellular solids, generally made by dispersing gas into a liquid and then cool-
ing it to solidify. Foams are categorized as open-cell and closed-cell foams. Depending on the solid materials made into
foams, they are also categorized as polymeric, metallic, and ceramic foams, etc. Due to developments in material science
and manufacturing techniques, advanced foams have great potential for use in automobile, aircraft, and space vehicle struc-
tures. A special example is the application in thermal protection system (TPS) of space vehicles. Most of the available liter-
ature focuses on thermo-elastic constants of foams, whereas fracture and failure have been paid very little attention. Thus
there exists an urgent need for the study of crack propagation behavior and fracture toughness of foams. Since the represen-
tative volume element or unit cell of many types of foams such as the carbon foam.

Fig. 1 could be well approximated as a tetrakaidecahedron (Fig. 2), fracture toughness of tetrakaidecahedral foams will be
studied in this paper.
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Nomenclature

D length of the side of equilateral triangle cross section of the strut
Eoo1, Eo10, E100 €lastic moduli of the foam in the lattice vector directions
G critical strain energy release rate

K; Mode I stress intensity factor

Kic Mode-I fracture toughness

Ky Mode II stress intensity factor

Ky Mode-II fracture toughness

l length of each strut in the tetrakaidecahedron unit cell

Wyy rotations in the XY plane (Fig. 3)

p,q,s  parameters dependent on the material constants of the foam

1V phase angle used as a measure of mode mixity

r radial distance of points in the K-field boundary from the crack tip
Sij compliance matrix coefficients of the foam

p* density of the foam

Ps density of the solid material

Otip maximum principal stress in the strut in the vicinity of crack tip
oy ultimate tensile strength of strut

0 angle measured between the positive X-axis and line joining the crack tip to the points in the K-field boundary
u displacement in the X-direction (Fig. 3)

RY displacement in the Y-direction (Fig. 3)

It has been accepted for a long time that a tetrakaidecahedron, packed in a BCC structure, satisfies the minimum surface
energy condition for mono-dispersed bubbles [1]. Only in 1994 a little better example with smaller surface energy was found
[2]. The tetrakaidecahedral foams have held the interest of researchers for decades. Microcellular graphitic carbon foams
were first developed at the US Air Force Research Laboratory in the 1990s [3]. The repeating unit cell of this foam can be
approximated by a regular tetrakaidecahedron [4]. Micromechanical models have been used to predict mechanical proper-
ties such as Young’s modulus, bulk modulus, yield surface, etc. Linear elastic behavior of low-density tetrakaidecahedral
foams has been studied [5,6] and analytical model of elastic moduli has been developed [7]. Based on this analytical model,
a fracture model for rigid polyurethane foam was derived analytically [8]. Nonlinear elastic response of the foams was stud-
ied under compressive loading and a failure surface was defined [9]. However, not much work has been done on predicting
the fracture toughness of tetrakaidecahedral foams.

The most important parameter of cellular materials is the relative density p = p*/p,, where p* is the density of cellular
medium and p; the solid density, which is the density of the material that constitutes the struts or plates of the cell. The rel-
ative density is a measure of solidity, and most of the material properties depend on the relative density. Analytical methods
for determining the mechanical and thermal properties of cellular solids are well documented. However, research on fracture

Fig. 1. Micrograph of an AFRL carbon foam [3].
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Fig. 2. Three tetrakaidecahedral cells with strut length [ and thickness ¢t in a BCC lattice [16].

behavior of foams is still at its infancy. A theoretical model [10] showed that the Mode-I fracture toughness of open-cell foams
K was proportional to (p*/p)* and Mode-II fracture toughness to (p*/p;)?. This theoretical model was confirmed by studying
several open-cell foams with short cracks [11,12]. Experiments were conducted to verify the theoretical model [13-15]. A
comprehensive summary of mechanical properties of foams including fracture toughness could be found in Gibson and Ash-
by’s book [16]. Recently, new results and models on fracture toughness of open-cell foams were presented [17-19].

FEM based micromechanics is one of the methods to investigate the fracture toughness of cellular materials. In this meth-
od displacement boundary conditions corresponding to a given stress intensity factor are calculated based on linear elastic
fracture mechanics and applied to the micro-model. This approach was first used by Schmidt and Fleck [20] to study crack
growth initiation and subsequent resistance to propagation in hexagonal honeycomb structures made from ductile cell
walls. K-resistance curves were calculated under the assumption of small-scale yielding. Choi and Sankar [17,18] later used
a similar approach for studying the fracture behavior of carbon foams. It has also been used to study the damage tolerance of
elastic-brittle, 2-D isotropic lattices [21].

We use the same approach as Choi and Sankar [17,18] to determine the fracture toughness of tetrakaidecahedral foams.
We directly apply displacements based on the K-field on the boundary of the micromechanical model. A commercial soft-
ware — ABAQUS® - is used for FEM calculations and the input files of FEM are generated by MATLAB®. Furthermore, we
investigate the effect of applying rotations as boundary conditions [21] in addition to prescribed translational displacement
boundary conditions on the predicted fracture toughness.

2. Approach

Our approach is a global-local approach wherein the microstructure is modeled in detail near the crack tip (inner region),
and boundary conditions are applied at far away points (outer region) according to continuum fracture mechanics (see

Macro model Micromechanical model

Fig. 3. Finite element micro-scale model of the cellular medium with a crack. The dimensions of the model depend on the number of unit cells used.



1280 P. Thiyagasundaram et al./Engineering Fracture Mechanics 78 (2011) 1277-1288

Fig. 3). The foam in the outer region is considered as a homogeneous orthotropic material. The microstructure of the inner
region surrounding the crack tip is modeled in detail. The individual struts of the foam are modeled using finite elements.
Consequently we assume that the displacement and stress fields in the outer region are well described by continuum frac-
ture mechanics. Thus the displacements along the boundary of the inner and outer regions can be predicted by fracture
mechanics equations for a given stress intensity factor. Obviously the inner region should be much larger than the strut
dimensions. We verify this by performing a convergence study by varying the size of the inner region.

For foams made of brittle materials, once we know the stress intensity factor at macroscale and the corresponding max-
imum micro-scale tensile stresses in the struts ahead of the crack, we can calculate the fracture toughness of the foam by the
following equation [17]:

K _ Otip _ K
E_G—U:HGC_O_—WGU (1)
where K; is the Mode I stress intensity factor, Kj. is the Mode-I fracture toughness, o, is the tensile strength of struts or the
foam ligaments, and o, is the maximum tensile stress in the first unbroken strut ahead of the crack tip.

Sih and Liebowitz [22] determined the K-field in the vicinity of a crack tip in homogeneous orthotropic materials. We can
directly apply displacements based on the K-field on the boundary of the microstructure. The displacement field near the
crack tip for Mode I:

u(r,0) = KM/%Re{S 1 S [slpz(cos(9+sz sin0)'? — s,p, (cos 0 + s sin@)”z]}
1—92

u(r,0) =K, \/%Re{sl 1 5 [slqz(cos 0+555in0)"? — 5,q,(cos 0 + s; sin 0)1/2] } (2)

A
Cross-Section A-A

Fig. 4. A tetrakaidecahedral unit cell and the cross section of a strut.

Table 1
Properties of the strut chosen for Fracture toughness calculation.
Property Value
Material properties of the strut Density, ps (kg/m?) 1650
Elastic modulus, Es (GPa) 2342
Poisson ratio, vs 0.33
Tensile strength o, (MPa) 689.5
Geometry (Fig. 4-1) L (mm) 1
D (mm) 0.06
Relative density 0.001653
Cross-section properties (equilateral triangle) Cross sectional area, A (m?) 1.5588 x 107°
Moment of Inertia, I, I, (m*) 2.3382 x 10719

Polar moment of Inertia, J (m*) 4.6765 x 1071°
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The displacement field near the crack tip for Mode II:

u(r,0) = KM/%Re{ﬁ [pz(cos 0+ s,5in0)"/> — p, (cos 0 + s; sin 9)1/2] }

v(r,0) = K"\/%Re{sllfsz [qz(cos 0+s,5in0)"% — q,(cos 0 + sy sin 0)1/2] } (3)

Table 2
Elastic properties of the foam used in the current study.

Property Value
Elastic moduli Ex=Ex=E, (Pa) 46.7 x 10°
Poisson ratios Vy = Vyz = Vxz 0.498
Shear moduli Gy = Gy, = Gy, (Pa) 14.9 x 10°
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Fig. 5. Mode-I fracture toughness (deformed configurations). (A) 10(w) x 11(h), (B) 16(w) x 15(h), (C) 24(w) x 25(h), and (D) 30(w) x 31(h).
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In the above relations the displacements are given as a function of polar coordinates r and 0 instead of usual x and y for
convenience. The parameters p, g and s are dependent on material elastic constants and the relations can be found in Sih and
Liebowitz [22]. The details of obtaining the stiffness matrix has also been given in Appendix A. Using the expressions for u
and v in the above equations, rotations about the z-axis can be calculated as

1 {av au]

Dy =5 5% " ay (4)

The expressions for obtaining the deformation gradients (22, g—; are given in Appendix B.
After we find the maximum tensile stress in the struts near the crack tip, we can use Eq. (1) to obtain the Mode-I fracture

toughness of the foam. For Mode-II fracture toughness, we use Kj; and Ky in Eq. (1) instead of K; and K.

3. FEM model of the unit cell

The tetrakaidecahedral unit cell that we propose to study is a 14-sided polyhedron with six square and eight hexagonal
faces. It is more precisely called truncated octahedron, since it is created by truncating the corners of an octahedron [23].
From a different viewpoint, it can be generated by truncating the corners of a cube [7]. All the edges of the cell are of equal
length L and cross sectional area A as shown in Fig. 4. The tetrakaidecahedral foam has a BCC lattice structure. The axes of the
BCC lattice are parallel to the axes of the cube. Due to the symmetry of the structure, the Young’s moduli of the foam in the
lattice vector directions are equal:

EBO] :Eglo :E;OO (3)

Each strut of the cell is treated as a beam element. In our study, the cross section of the struts is assumed to be an equi-
lateral triangle with side length D (Fig. 4). Similar foam with triangular cross section was studied by Zhu et al. [7]. The tri-
angular cross section is considered closer to the three-cusp hypocycloid cross section of polyurethane foams as was shown
by Sullivan et al. from their microstructure studies [24]. In the finite element analysis we need to input numerical values for
the solid material properties. The properties used in this study are given in Table 1.

We use the finite element based micromechanical analysis described by Thiyagasundaram et al. [25] to calculate the
homogeneous elastic constants of the foam. One can also use the analytical expressions derived by Zhu et al. [7]. The calcu-
lated properties are given in Table 2. These properties were used to calculate the compliance coefficients in Eq. (A1) in
Appendix A. We have used the two-node Euler-Bernoulli (B33) beam elements in ABAQUS 6.9-2 to model the struts.

4. Results and discussion
The procedures described in Section 2 were used to predict the Mode I, Mode Il and mixed mode fracture toughness of the

foam. Since we are interested in plane strain fracture toughness only one unit cell was used in the thickness direction (z-
direction). Periodic boundary conditions were imposed on the two surfaces normal to the z-axis.

4.1. Mode-I and Mode-lII fracture toughness

A convergence study was performed by calculating the fracture toughness choosing micromechanical models of different
sizes. The size of the model is varied by increasing the number of unit cells chosen along the x and the y directions.

Table 3
Mode-I fracture toughness results with Input Kj = 100.
Case Model Model Crack Total number  Strut tip stress Fracture toughness Difference between values with
width height length of nodes (MPa) (Pay/m) and without rotation (%)
(cells) (cells) (cells)

w/0o With w/0o With
rotation rotation rotation rotation

1 10 11 5 1844 112 111.5 615.4 618.2 0.45
2 12 13 6 2596 111.6 1113 617.6 619.8 0.35
3 14 15 7 3476 1115 111.2 618.7 620.1 0.22
4 16 17 8 4484 1113 111.2 619.4 620.2 0.12
5 18 19 9 5620 111.2 110.9 620.2 621.5 0.21
6 20 21 10 6884 1111 110.9 620.7 621.7 0.17
7 22 23 11 8276 111 110.8 621.2 622.1 0.14
8 24 25 12 9796 110.9 110.8 621.6 622.5 0.14
9 26 27 13 11,444 110.8 110.7 622.1 623 0.14
10 28 29 14 13,220 110.8 110.7 622.1 622.9 0.13
11 30 31 15 15,124 110.8 110.7 622.1 622.8 0.11
12 32 33 16 17,156 110.8 110.7 622.2 622.7 0.09
13 34 35 17 19,316 110.8 110.7 622.1 622.7 0.10
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Fig. 6. Mode-I fracture toughness convergence.

In the current study, two sets of boundary conditions have been considered, one which does not include rotations w,, as
boundary condition and the other which includes rotations. The question of including rotation arises because of the fact that
beam elements are used to model the foam in the vicinity of the crack tip and the beam element nodes have rotation as a
degree of freedom. In the previous work Choi and Sankar [17] ignored the rotations basically setting the corresponding cou-
ple to be equal to zero. On the other hand Schmidt and Fleck [20] included the rotation as a boundary condition. In the pres-
ent study we considered both cases - with and without rotation boundary condition.

Thirteen different models were considered to check convergence for Mode I. Four models out of the 13 models are shown
in Fig. 5. The crack size is 50% of the width in all the cases chosen. The results obtained have been shown in Table 3. The total
number of nodes in the models varies from 1800 to almost 20,000 nodes respectively as shown in the Table 3. It is seen that

as the size of the model is increased, there is convergence (Fig. 6).
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Fig. 7. Mode-II fracture - deformed configurations. (A) 10(w) x 11(h), (B) 12(w) x 13(h), (C) 28(w) x 29(h), and (D) 30(w) x 31(h).
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Table 4
Mode-II fracture toughness results with Input Kj; = 100.
Case  Model Model Crack Total number  Strut tip stress Fracture toughness Difference between values with
no. width height length of nodes (MPa) (Pay/m) and without rotation (%)
(cells) (cells) (cells) w/o With w/o With
rotation rotation rotation rotation
1 10 11 5 1844 125.1 125 551 551.6 0.112
2 12 13 6 2596 126.4 126.3 545.3 546.1 0.135
3 14 15 7 3476 127.4 127.2 541.4 542 0.118
4 16 17 8 4484 127.8 127.6 539.6 540.2 0.11
5 18 19 9 5620 128.1 128 538.2 538.8 0.109
6 20 21 10 6884 128.8 128.6 535.4 536.1 0.124
7 22 23 11 8276 129.4 129.3 532.8 533.4 0.116
8 24 25 12 9796 130.8 130.6 527.2 527.8 0.115
9 26 27 13 11,444 1314 131.2 524.9 525.6 0.13
10 28 29 14 13,220 131.6 1315 5239 524.3 0.076
11 30 31 15 15,124 131.8 131.8 523 5233 0.068
12 32 33 16 17,156 131.9 1319 522.7 522.9 0.046
13 34 35 17 19,316 132 1319 522.5 522.7 0.045

The results show that for foam with relative density 0.16% (Table 3, Fig. 6) the Mode-I fracture toughness converges to
622 Pa/m when rotational boundary conditions are not applied and to 622.5 Pa,/m when the rotations are applied. The
highest and the lowest fracture toughness values are 622.2 Pay/m and 615.4 Pay/m, respectively which makes the maximum
variation to be only about 1.1%. This would mean that calculated value can be used as a material property. Also since the
variation in the converged fracture toughness values between fracture toughness with and without rotational BC is only
0.1%, it can be concluded that there is no significant change in fracture toughness values when rotations are applied.

Similar to the procedure for Mode I, by imposing the displacements of Kj; field on the boundary to micromechanical model
(Egs. (2) and (3)) we can obtain the maximum tensile stress near the crack tip from the FE results and hence calculate the
Mode-II fracture toughness value using Eq. (4). Again a convergence study is conducted by calculating the fracture toughness

555.0
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522Pa/Jm ®
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Fig. 8. Mode-II fracture toughness convergence.

Table 5
Results obtained for mixed mode fracture toughness (30 x 31 configuration).
v (deg) K; (Pay/m) Ky (Pay/m) Critical strain energy release rate G. (N/m)
0 622.8 0.0 8.31
5 641.8 56.2 8.89
10 656.2 115.7 9.51
15 658.9 176.5 9.96
20 660.8 240.5 10.59
30 639.6 369.3 11.68
40 591.6 496.4 12.77
45 559.3 559.3 13.40
50 522.5 622.6 14.15
60 390.3 676.0 13.05
70 234.4 644.1 10.06
80 105.0 595.4 7.83
85 49.1 561.5 6.80

90 0.0 523.0 5.86
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choosing different micromechanical model sizes. As for the case of Mode I, the size of the model is varied by increasing the
number of unit cells chosen along the x and the y directions. Similar to Mode I, two sets of cases have been considered - one
which does not include rotations as boundary conditions and the other which includes rotations. Deformed configurations of
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Fig. 9. Mixed mode fracture toughness - deformed configurations (30 x 31). (A) ¥ = 0, (B) y = 15, (C) = 30, (D) y = 45, (E) = 60, and (F) y = 90.
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Fig. 10. Mixed mode fracture toughness results (30 x 31 configuration).

a few models chosen for this study are shown in Fig. 7. The results obtained are presented in Table 4 and convergence has
been shown in Fig. 8.

The results show that the Mode-II fracture toughness converges to about 522 Pa,/m when rotational displacements are
not applied and to 521.5 Pay/m when the rotations are applied. The highest and the lowest fracture toughness values are
551.6 Pay/m and 521.7 Pay/m respectively which makes the maximum variation about 5.3%. Also since the variation in
the converged fracture toughness values between fracture toughness with and without rotational BCs is only 0.1%, there
seems to be no significant change in fracture toughness values when rotations are applied.

4.2. Mixed mode fracture toughness

In calculating mixed mode fracture toughness, two stress intensity factors are required as input for calculation of bound-
ary displacements. The Mode I and Mode II to stress intensity factors were varied as

Kh:Kﬂm¢7(0<¢<§) (6)

where  is the phase angle, a measure of mode mixity. One can note that y = 0 corresponds to pure Mode I and y =% to
Mode II. Intermediate values of i indicate mixed mode fracture. All the other equations for calculating displacements and
rotations remain the same as given in the appendices.

Results obtained from simulations for predicting mixed mode fracture toughness are shown in Table 5. Some deformed
configurations for different combinations of K; and Kj; are shown in Fig. 9. The size of the local region is assumed to be
30 x 31 cells. In order to present the mixed mode fracture toughness results we use the total critical energy release rate
G, as a measure of effective fracture toughness and plot is as a function of the phase angle  in Fig. 10. We use the isotropic
material formula for G, given by

_ Kt + K

Ge E

(7)
where E is the Young’s modulus of the foam, say E,. It should be noted from the results in Table 2 that the foam is nearly
isotropic, and the use of the above formula in Eq. (7) is justified at least for qualitative understanding of the effect of mode
mixity on the fracture toughness. From Fig. 10 one can note that the fracture toughness increases as the phase angle in-
creases from 0-degree and reaches a maximum value at about = 50°.

5. Summary and conclusion

A finite element based method has been used to calculate the fracture toughness of foams. The inputs to the model are the
geometric parameters required to model the repeating unit cell and tensile strength of the foam ligament or strut. A microm-
echanics based method has been used to calculate the Mode I, Mode Il and Mixed mode fracture toughness of foams with
tetrakaidecahedral unit cells. Fracture toughness has been shown to converge as the size of micromechanical model is in-
creased. Hence, the calculated fracture toughness can be used as a material property. It has also been shown that applying
rotation boundary conditions does not influence the calculated fracture toughness significantly, at least for the cases consid-
ered here.
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Appendix A

The compliance matrix [S] of a plane orthotropic medium is given by

S]] 512 515 1/Ex *ny/Ey 0
Sl= S S S| =|-Vy/Ex 1/E 0 (A1)
Si6 S Ses 0 0 1/Gy

where the elastic constants in the above equation can be obtained from Table 2.
The characteristic equation of the orthotropic material as given by Sih and Liebowitz [22]

Sttt — 2816183 + (2512 + Se6) 4> — 2Sa61t +Sp2 =0 (A2)

There are four roots of the above characteristic equation. We denote s; and s, as the two unequal roots with positive con-
jugate values:

S1 =My =0 +ify, S2= Uy =0 +if, (A3)

The constants p; and g; (j = 1, 2) are related s; and s, as below

P = 5115% +S12 —S1651, Py = 511551 + S12 — Si652 (A4)
_ S125% + S22 — S2681 _ 5125% + S22 — 52652
q, = 3 » 4y = 5

The displacement field in the vicinity of crack tip is a function of the orthotropic material parameters p1, p2, q1, 2, S; and
s, as given in Egs. (2) and (3).

Appendix B

The procedures for calculating rotation boundary conditions (cwyy) are as follows. From the displacement field given in Eq
(2) we can calculate displacement gradients for Mode I as:

ou

ou 1 1 . .
==K <—> Re{s]T [slpz(coslH—SZ sin0)"? — s,p, (cos 0 + s sm())”z] }%

or V2T

ov
KI\/ {5175 122 (cos 0+, sin0) '/ (— sin@-i—szcos())—%(cos@-s-s]sinﬁ)’l/z(—sin(?-i—s]cos@)]}a
Kl< >Re{ s]qz(cos(9+sz sin0)"/2 — 5,4, (cos 0 + s, sin(?)”z] }%
—KI\/ e{s 5"12 (COS0+5,8in0)""/*(—sin0 + 5, cos 0) — 21 (cos 0 + 51 sin0) /> (—sin 0 + s, cose)]} (A5)
1—
The dlsplacement gradients for Mode II can be derived in a similar fashion:
1 1/2 . 121 Ou
<m> { pz(c056+52 sin0) /* — p;(cos 6 + s1 sin ) ] 50
*Kll
2r 12 . » s 12 . ov
X nRe - 72 (cos 0+ s, sin )" '“(—sinf + s, cos 0) — B (cos 0 + s1 sin0) ™/ (—sin 0 + s cos())] ar
- K"< ! )Re{ q2 (cos 0 + S, sin 0)/? — q,(cos 0 + s sin@)l/z]}@
27r 00
2r 12, o R Y
Ky ERe 5 " (cos 0+ s, sin0) /“(—sin 0 + s, cos 0) — % (cos O + s, sin 0) (—51n9+s1c050)]
1—

(A6)
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The rotational boundary condition can be calculated as:
ov ov sinf /[Ov\ ou . ou cosf (ou 1[0v ou
e =os0(5) -2 (5) oy =m0 (5r) + 7 ()2 =3 - 3] A
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