EXP(X) AND ITS PROPERTIES

One of the most important mathematical constants is the irrational number $\mathrm{e}=\exp (1)=$ 2.718281828459045. It first arose at the time of the invention of calculus by Isaac Newton (1642-1727) and Gottfried Wilhelm Leibnitz (1646-1716) when looking at the derivative of the function $f(x)=a^{x}$. Using the standard definition of a derivative one has-

$$
f(x)^{\prime}=\frac{d\left(a^{x}\right)}{d x}=\frac{\lim }{\Delta x \rightarrow 0}\left\{\frac{a^{x+\Delta x}-a^{x}}{\Delta x}\right\}=a^{x} \frac{\lim }{\Delta x \rightarrow 0}\left\{\frac{a^{\Delta x}-1}{\Delta x}\right\}
$$

If we now set $a=b+1$ and use the binomial expansion we find-

$$
a^{\Delta x}=(b+1)^{\Delta x}=1+b \Delta x+\frac{b^{2}}{2!} \Delta x(\Delta x-1)+\frac{b^{3}}{3!} \Delta x(\Delta x-1)(\Delta x-2) \ldots
$$

Now looking at the term in the large curly bracket on the right of the $f(x)^{\prime}$ expansion we find-

$$
\frac{\lim }{\Delta x \rightarrow 0}\left\{\frac{a^{\Delta x}-1}{\Delta x}\right\}=(a-1)-\frac{(a-1)^{2}}{2}+\frac{(a-1)^{3}}{3}-\ldots
$$

But we recognize that this expansion just equals the infinite series for $\ln (a)$. When $a=2$ one recovers the Gregory formula for $\ln (2)=0.693147 \ldots<1$ Also when a=3 we have $\ln (3)=1.098612>1$. This implies there is a number 'a' in the range $2<a<3$ where $\ln (a)$ becomes unity. This number is $\mathrm{a}=\mathrm{e}=2.718281828459045 \ldots$. For it we have the important relation that-

$$
\frac{d\left(e^{x}\right)}{d x}=e^{x}=\exp (x)
$$

This is the only function of x which has its derivative equal to itself.
Let us look at some additional properties of $\exp (\mathrm{x})$.
We begin by giving a Maclaurin expansion of $\exp (x)$ about $x=0$. It reads-

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+. .=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

So when $\mathrm{x}=1$ we get the identity-

$$
e=\exp (1)=\sum_{n=0}^{\infty} \frac{1}{n!}=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}
$$

This is a rather rapidly converging series because of the factorial term in the denominator of the series. A graph of $\exp (x)$ and $\exp (-x)$ follows-

```
THE EXPONENTIAL FUNCTIONS EXP(X) AND EXP(-X)
```


Note that the function $\exp (-\mathrm{x})$ has the same series form as $\exp (\mathrm{x})$ except that the odd powers of x become negative. Adding together $\exp (x)$ and $\exp (-x)$ we get a series with all positive signs . It reads-

$$
\exp (x)+\exp (-x)=2\left\{1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots\right\}+
$$

Thus we have a new even function-

$$
\cosh (x)=\frac{\exp (x)+\exp (-x)}{2}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}
$$

known as the hyperbolic cosine function. It is an even function with a minimum value of one at $\mathrm{x}=0$ and infinity as $|\mathrm{x}|$ approaches infinity. One also has a second hyperbolic function defined as-

$$
\sinh (x)=\frac{\exp (x)-\exp (-x)}{2}=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}
$$

This function has odd symmetry since $\sinh (-x)=-\sinh (x)$. A plot of both hyperbolic functions follows-

```
THE HYPERBOLIC FUNCTIONS SINH(X) AND COSH(X)
```


We can also combine these hyperbolic functions to yield-

$$
\exp (x)=\cosh (x)+\sinh (x) \text { and } \exp (-x)=\cosh (x)-\sinh (x)
$$

Replacing x by ix where $\mathrm{i}=$ sqrt(-1) we arrive at the famous Euler Identity-

$$
\exp (i x)=\left\{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots\right\}+i\left\{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots\right\}=\cos (x)+i \sin (x)
$$

This implies that -

$$
\cosh (i x)=\cos (x) \quad \text { and } \quad \sinh (i x)=i \sin (x)
$$

and also that-

$$
\operatorname{Real}\{\exp (\mathrm{ix})\}=\cos (\mathrm{x}) \quad \text { and } \quad \operatorname{Imag}\{\exp (\mathrm{ix})\}=\sin (\mathrm{x})
$$

About six years ago we discovered a new way to get very accurate approximate values of trigonometric functions using integrals involving Legendre polynomials.(see http://www2.mae.ufl.edu/~uhk/TRIG-APPROX.pdf). This same technique can be used when dealing with the even hyperbolic function $\cosh (\mathrm{x} / 2)$. One notes that the integral-

$$
\int_{x=-1}^{1} P[2 n, x] \cosh (x / 2) d x=N(n) \exp (1 / 2)-M(n) \exp (-1 / 2)
$$

, where $N(n)$ and $M(n)$ are polynomials in n and $P[2 n, x]$ are the even Legendre polynomials of order 2 n . Since the integral on the left has 2 n zeros in the range $-1<\mathrm{x}<1$ its value approaches zero as n gets large. Hence we have the approximation for $\exp (1)$ of -

$$
e \approx M(n) / N(n)
$$

If we now take $\mathrm{n}=10$, we get the approximation-

$$
\begin{aligned}
& \mathrm{e} \approx\{1102315308988650200439441647042 / 405519139865470406785501069202\} \\
& =2.71828182845904523536028747135266249775724709369995957496696 \ldots
\end{aligned}
$$

which is good to 60 decimal places. To get this accuracy with the above infinite series representation for $\exp (1)$ would require summing the first 47 terms of the series.

Several years ago we constructed a mnemonic for remembering $\exp (1)$. It goes as followse=
2.7+Andrew Jackson twice+right triangle+Fibonacci three+full circle+one year before crash-Boing jet-end of black death in Europe+route going west

That is 2.7-1828-1828-459045-235-360-28-747-1352-66
The mnemonic yields $\exp (1)$ to 33 places and thus exceeds what a hand calculator or a mathematical handbook can produce.
U.H.Kurzweg June 27, 2017

