
  
 

        
                       PROPERTIES OF REGULAR POLYGONS 
 
The simplest 2D closed figures which can  be constructed by the concatenation of equal 
length straight lines  are the regular polygons including the equilateral triangle, the 
pentagon, and the hexagon. We want here to quickly derive some of the generic 
properties of such polygons including exterior and interior vertex angles, the length of 
their diagonals, and their area. 
 
Our starting point is the following sketch of part of one of these polygons having n 
vertexes and side-length s- 
 

             
 
We have  an n sided regular closed polygon whose exterior angles must at up to 2 
radians. Hence each of the exterior vertex angles equals- 
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This means that the interior vertex angle becomes- 
 

                   
n

n )2( 
   

 
The result implies that the sum of the interior vertex angles can become quite large as n 
increases. For example an octagon(n=8) has the sum of the interior angles equal to 6 
rad.  
 
To calculate the area A(n) of an n sided regular polygon we need to just multiply the area 
of the gray sector shown in the figure by n. One finds the total polygon area to be- 
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For the obvious case of a square (n=4) one has A(2)=s2. For a hexagon (n=6) we get  
 

                                 2

2

33
)6( sA   

 
As n goes to infinity we find A()=r2 as expected. From the geometry in figure 1 we 
also have- 
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We next look at the length of a diagonal line connecting vertex n with vertex n+2. Here 
we can make use of the law of cosines applied to the following triangle- 
 

           
            
We get – 
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Hence- 
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For the case of a square we find d=s sqrt(2) , for a hexagon d=s sqrt(3), and for an 
octagon d=s sqrt[2+sqrt(2)]. 
 
An interesting result for d occurs when n=5. There- 
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by using a double angle formula for cos() and looking up the value for cos(/5). 



  
 

The quotient term in this result is just the Golden Ratio  found well over two thousand 
years ago by the ancient Greeks. Its value to one hundred places reads- 
 
=1.61803398874989484820458683436563811772030917980576286213544862270526
0462818902449707207204189391138… 
 
Note that it is an irrational number and thus may be useful in the generation of prime 
numbers. For example, p=1618033988749 is a prime.  
 
In playing with the equality- 
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one sees there exists a right triangle, known as Kepler’s Triangle, with sides a=sqrt(), 
b=1 and hypotenuse c=. So one has the equality-  
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Additional irrational numbers can be generated by finding the diagonals to higher n 
polynomials. Take the case of n=7. Here we have- 
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to fifty places. 
 
We can generalize the above diagonal lengths for any n sided regular polygon to the 
irrational number- 
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valid from n=4 through infinity. That is, the values for (d/s) lie in the range- 
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Every n-sided regular polygon obeys the triangle rule shown- 



  
 

                  
There are an infinite number of irrationals N(n) possible. Some of these allow expression 
in terms of roots of integers.  In particular we find the additional exact results- 
 
     N(10)=2 cos(/10)=sqrt{[5+sqrt(5)]/2) 
               = 1.9021130325903071442328786667587642868113972682514… 
 
and- 
 
    N(12)=2 cos(/12)=[3+sqrt(3)]/sqrt(6) 
              =1.9318516525781365734994863994577947352678096780168… 
 
These irrational numbers for the  diagonal-side-length ratio are  just as valid as is the 
Golden Ratio found at n=5. Note the approach toward N()=2. 
 
As a final consideration consider bounding the polygon area A(n) between the two circles 
of area r2 and h2, where r and h are the length indicated in the first figure above. 
We can write that- 
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With a bit of mathematical manipulation this simplifies to the inequality- 
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Hence we have – 
 
                > n sin(2/n)/2       and         <n tan(/n) 
  



  
 

As n->infinity, both terms go to- 
 
 =3.1415926535897932384626433832795028841971693993751…  
 
but they converge to this limit very slowly as Archimedes(287-212BC) already found out 
several thousand years ago. For a hundred-thousand sided regular polygon we still have 
only a  six decimal place accuracy for . Here is the inequality at n=100,000- 
 
                            3.141592448<< 3.141592757 
 
A former colleague of mine here at the University og Florida was Dr.Karl Pohlhausen of 
boundary layer fame. He told me that when he was a child back in the late 18 hundreds 
he would recall the value of  by the mnemonic “Drei komma Huss Verbrandt”. This 
meant 3 plus the year 1415 when the Czech religious reformer J. Huss was burnt at the 
stake. 
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