
         PROPERTIES OF COMPLETE ELLIPTIC INTEGRALS 
 

Complete  Elliptic Integrals of the first and second kind are defined as- 
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, respectively.  Their complimentary forms are given as- 
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Typically |m|<1 and often you will see m replaced by k2 in mathematical texts and 
canned programs. 
 
Historically these integrals were first encountered in connection with the period of a 
simple pendulum and in the determination of the circumference of an ellipse. Their 
utility however extends much further and we will now look at some of their 
properties.  Lets begin with some simple substitutions- 

                     )sinh(,)tanh(1/)sin( 2 wswuut ==+== θ  
 
These produce the alternate forms- 
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 We can expand the above integral in t for K(m) to find- 
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This result can be integrated term by term to yield the well known result- 
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which converges relatively rapidly to yield K(0.5) accurate to 33 places when using 
the first hundred terms in the series. Expanding the above t integral for E(m) yields- 
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and produces the infinite series- 
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One can also use the above integral representations for the Complete Elliptic 
Integrals to obtain the following evaluations- 
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Numerous other integrals can be expressed in terms of K(m) and E(m). The reader 
is referred to the “Handbook of Mathematical Functions” by Abramowitz and 
Stegun. 
 
One can also obtain derivative conditions using the Leibnitz approach. For example, 
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and- 
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Another important property of the complete elliptic integrals is the Legendre 
observation that- 
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which at m=0.5 produces the very useful identity- 
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Also, in view of the derivative condition on K(m) given above, it follows that- 
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That is, π is given exactly as the product of two integrals as- 
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yielding π to eighty places. 
 
These  relations between π and K(0.5) and E(0.5), when used in conjunction with the 
AGM method for obtaining very precise values for these complete elliptic integrals , 
allows one to determine the value of π to  billion place accuracies(see- 
http://numbers.computation.free.fr/Constants/Pi/piAGM.html ) . Since the last 
integrals in t can be solved exactly in terms of gamma functions Γ, one finds the 
identity- 
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where M=1.1981402347355922075.. is the algebraic-geometrical mean(AGM) of 1 
and √2. We thus have- 
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for determining the value of π to any desired order of accuracy. Here we have used 
the Beta function relations- 
 

                         dttt
mn
mnmnB m

t

n 11

0

1 )1(
)(
)()(),( −

=

− −∫=
+Γ
ΓΓ

=  

 
                                      
Finally, let us formulate some differential equations involving K(m) and E(m). 
Consider first the hypergeometric series- 
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If we set a=b=1/2 and c=1, one obtains- 
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This just matches  2K(m)/π  from the earlier given series expansion. Thus we can 
conclude, knowing the form of the standard hypergeometric equation, that- 
 



      0)(
4
1)()21()()1( 2

2
=−−+− mK

dm
mdKm

dm
mKdmm  

 
Also, by manipulating the two first derivative conditions for K(m) and E(m) given 
above, we find the second order differential equation- 
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This is just another version of the hypergeometric equation with a=1/2,  
b=-1/2, and c=1. Indeed one has that- 
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