
                                CONTINUED FRACTIONS 

 

 
A general continued fraction is defined as- 
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with its convergents (gotten by taking up to the nth term in the expansion)given by- 
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For the special cases of b1=b2=b3= bn=1 with a0=1 and a1=a2=a3=a4=an=2 one finds 

the convergents to be F1=1, F2=3/2, F3=7/5, F4=17/12=1.416666. These numbers 

clearly converge to the value sqrt(2)=1.41421356… so that one can write- 
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There are an infinite number of other continued fractions possible with many of the 

more interesting ones having been found quite early by mathematicians such as 

Euler, Lagrange, and Lambert. It should be noted that a given number or function 

F can have more than one continued fraction expansion as we will demonstrated 

below. Also we point out that many computer programs such as  MAPLE, 

MATHEMATICA, and MATLAB have the built-in capability to generate simple 

continued fractions . 

 

     As a starting point for generating a continued fraction, we consider 

representing the square root of the number N.  To get the continued fraction in this 

case  we begin with- 
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or its equivalent form- 

       
NN

NN
NN

+

−
+=

0

0

0
 



Next re-substitute this value for sqrt(N) repeatedly into the expression to obtain the 

infinite general continued fraction- 
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which will converge to the correct square root value provided  N-N0  is small enough. 

For the case of N=2 and N0 =1 one recovers the expansion given above. If, however 

one is looking for a more rapidly converging continued fraction, the result- 
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is much better. Here 2a0=a1=an=14/5 and bn=1/25. One can also produce continued 

fraction expansions for functions G(x) based on their infinite series expansions. 

Take the case of- 
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We start the continued expansion by noting a convergents expansion can only 

contain terms of the form x
2n   

and the ans should contain the odd integers 2n+1. We 

thus try the form- 
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On inverting the arctan series we find that a comparison with the second 

convergents yields- 
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From this we see that A1=1 and A2=4. Continuing the procedure, one finds A3=9, 

A4=16, and eventually An=n
2
.  So one obtains the convergent partial fraction - 
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already known to Leonard Euler.  The smaller x becomes the more rapidly this 

fraction converges and thus is useful in evaluating certain arctan formulas for π 

where one deals with N>>1 in arctan(1/N) expansions. Note that for x=1/sqrt(3), one 

finds the continued fraction expression- 
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which has a pleasant appearance but is not much good in actually determining the 

value of π to a large number of decimal places. 

 

 Other interesting continued fractions include- 
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where the square bracket notation is often used for simple continued fraction 

abbreviations. Also- 
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which converges very slowly and, perhaps the simplest infinite continued fraction,- 

 

                            ...618033988.1]2/)51[(

1

1
1

1
1

1
1 =+=

+
+

+

+=Φ  

 

which represents the ratio Nn+1/Nn of the Fibonacci sequence 1, 2, 3, 5, 8,.. as n goes 

to infinity and also equals the golden ratio. The proof follows from the Fibonacci 

number definition- 
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so that- 
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which leads to the above result. 

 

 

Another continued fraction having a very simple form is- 
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This expansion arises in connection with solving the Diophantine equation y
2
-K

2
x

2
=1 

and also in the expansion of sqrt(2) as shown above. 

 

 We finish our discussion on continued fractions by looking at some finite 

continued fractions which correspond to rational numbers. Look for example at the 

three digit number K=124=100+20+4. Here we can write K/100=1+(1/5)+(1/25). This 

tells us that one has- 
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with a2 and a3 to still be determined. Writing down the second convergent, we 

have  
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which solves as a2=-(1+(1/5)) so that one chooses a2= -1 as the nearest integer. Next 

taking the third convergent one finds a3= -5 exactly so that the continued fraction 

terminates as  

 

                                  ]5,1,5;1[

5

1
1

1
5

1
1

100
−−=

−
+−

+

+=
K

  

 

One can also use canned mathematics programs to quickly obtain simple continued 

fractions. For example, the two line MAPLE command- with(numtheory) followed 

by cfrac(Pi, 6)- produces a simple continued fraction for Pi good through six 

convergents. The result reads [3;7,15,1,292,1,1,]. Note the non-regularity in the 

numbers for this irrational number. The large number 292 indicates that a very 

good approximation will be achievable by terminating things at the third 

convergent. This produces- 

 

                        ..1415929.3
113

355

1

1
15

1
7

1
3 ==

+

+

+≅π  

 

which is accurate to six decimal places. The approximation is referred to as the Otto 

ratio(after Valentin Otto, Professor of Astronomy, Wittenberg, 1573) although it 

was already known to Chinese mathematicians a thousand years earlier.  
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