NUMBER OF UNIQUE DIAGONALS ONE CAN DRAW INSIDE A REGULAR POLYGON

In today’s Wall Street Journal Puzzle Page of October 1, 2016 the question was asked how many unique diagonals one can draw inside a heptagon (ie-seven sides). The question is accompanied by the following picture-

This question is rather trivial as a visual inspection of the figure reveals. There are four diagonals which can be drawn from vertex 3 . This is followed by four diagonals from vertex 4 , follwed by just three diagonals from vertex 5 , with just two from vertex 6 and one from vertex 7.The remaining vertex points 1 and 2 yield no additional diagonals not already present. Hence the answer is that the number of diagonals D equals-

$$
\mathrm{D}=4+4+3+2+1=14
$$

A generalization, not mentioned in the article, is to make the problem a bit more challenging by discussing diagonals for n sided regular polygons. Doing so we arrive at the following table-

Side Number, n	Unique Diagonals, D	$1^{\text {st }}$ Difference	2nd Difference
3 (Triangle)	0	-	-
4 (Square)	2	2	-
5 (Pentagon)	$5=2+2+1$	3	1
6 (Hexagon)	$9=3+3+2+1$	4	1
7 (Heptagon)	$14=4+4+3+2+1$	5	1
8 (Octagon)	$20=5+5+4+3+2+1$	6	1
9 (Nonagon)	$27=6+6+5+4+3+2+1$	7	1
10 (Decagon)	$35=7+7+6+5+4+3+2+1$	8	1

Noting that the second differences are all equal to one, suggests at once that D must go as a quadratic in n . Working out the constants for such an expansion, we arrive at the formula-

$$
D=\left(\frac{n}{2}\right)[n-3]
$$

which checks nicely with the numbers for D given in the table. A picture showing all thirtyfive unique diagonals for a decagon follows-

DECAGON AND ITS THIRTY-FIVE DIAGONALS

$$
\text { diagonals }=7+7+6+5+4+3+2+1=35
$$

For a twenty sided polygon (icasagon) the number of unique diagonals will be -

$$
\mathrm{D}=(20 / 2)[20-3]=170
$$

Oct.1,2016

