FACTORING OF N=pq USING k

In several earlier notes we have found that a semi-prime $N=p q$, with primes $p<q$, can be factored into the forms $p=6 n \pm 1$ and $q=6 m \pm 1$, where n and m are integers whose values depend on finding integer solutions of -

$$
\begin{aligned}
& R[k]=\sqrt{(H+6 k)^{2}-4(B-k)} \quad \text { when } \quad N \bmod (6)=1 \\
& \text { or } \\
& S[k]=\sqrt{(H+6 k)^{2}+4(B-k)} \quad \text { when } \quad N \bmod (6)=5
\end{aligned}
$$

Here $\mathrm{A}=(\mathrm{N}-1) / 6$ for the first case and $\mathrm{A}=(\mathrm{N}+1) / 6$ for the second case. Also $\mathrm{H}=\mathrm{A} \bmod (6)$ and $B=(A-H) / 6$. For smaller and intermediate sized Ns the above radicals are easy to solve to produce integer values. However, when N is large it becomes difficult to find the right value of variable k which allows this. The values of n and m are given as-

$$
[n, m]=\frac{1}{2}[(H+6 k) \pm R] \quad \text { or } \quad[n .-m]=\frac{1}{2}[(H+6 k) \pm S]
$$

For a typical semi-prime the quantities B and H will be known, so one needs to only find the value of k which makes the radical an integer. Although B is typically much smaller than k, k can nevertheless become large so that a brute force evaluation of one or the other of the radicals can become extremely time consuming.

We show here how to get around this difficulty by estimating a value for k designated by k1. The procedure works as follows. It is known that -

$$
\mathrm{p}=6 \mathrm{n} \pm 1=\alpha \operatorname{sqrt}(\mathrm{N}) \text { and } \quad \mathrm{q}=6 \mathrm{~m} \pm 1=(1 / \alpha) \text { sqrt }(\mathrm{N}) \text { with } \quad \mathrm{o}<\alpha<1
$$

Thus for large N , we can say that-

$$
\mathrm{n} \approx \alpha \operatorname{sqrt}(\mathrm{~N}) / 6, \quad \mathrm{~m} \approx(1 / \alpha) \operatorname{sqrt}(\mathrm{N}) / 6 \text {, and } \mathrm{p} / \mathrm{q} \approx \alpha^{2}
$$

The range for α is $0<\alpha<1$ with $\alpha=1$ meaning that $n=m$ and $p=q$.
Now we can get an estimate for the desired value of k by eliminating n from its two definitions. For the case of $N \bmod (6)=1$, we get-

$$
\frac{\alpha \sqrt{N}}{6}=\left(\frac{1}{2}\right)\{(H+6 k)-R\}
$$

and for $N \bmod (6)=5$, we have-

$$
\frac{\alpha \sqrt{N}}{6}=\left(\frac{1}{2}\right)\{(H+6 k)-S\}
$$

Solving for k in these last two expressions, we have, after noting $\mathrm{H} \ll 6 \mathrm{k}$ and $1 \ll \alpha s q r t(N)$, that -

$$
\begin{aligned}
& k 1[\alpha]=\approx \frac{\alpha \sqrt{N}}{36}\left\{1+\frac{1}{\alpha^{2}}\right\} \text { for } N \bmod (6)=1 \\
& \text { and } \\
& k 1[\alpha] \approx \frac{\alpha \sqrt{N}}{36}\left\{1-\frac{1}{\alpha^{2}}\right\} \text { for } N \bmod (6)=5
\end{aligned}
$$

These values can now be used to search for the k which should lie close to k 1 and which makes the radical an integer. The values for k1 depend not only on the root of N but also on α. Typically large semi-primes will require large k1s and the size of |k1| will increase with decreasing α. The following graph characterizes this behavior-

NON-DIMENSIONAL K1 VERSUS ALPHA

In the graph we have run the non-dimensional quantity $\mathrm{L}=36 \mathrm{k} 1[\alpha] / \mathrm{sqrt}(\mathrm{N})$ over the range $0.2<\alpha<$ for both types of semi-primes. The increase in L with decreasing α is at first small but then increases rapidly for values of α in the given range. Typically we have $\mathrm{L} \approx 2$ for $\operatorname{Nmod}(6)=1$ and $\mathrm{L} \approx-1$ for $\mathrm{N} \bmod (6)=5$ provided α lies between 0.5 and 1 . We also find the unique value of $\mathrm{L}=2$ occuring for those semi=primes N where $\mathrm{p}=\mathrm{q}$.

Let us next demonstrate the above points by working out a few explicit factorizations of larger semi-primes. Take first -
$\mathrm{N}=155505643$ where $\operatorname{sqrt}(\mathrm{N})=12470.19, \mathrm{~N} \bmod (6)=1, \mathrm{~A}=(\mathrm{N}-1) / 6-25917607, \mathrm{H}=\mathrm{A}$ $\bmod (6)=1$, and $B=(A-H) / 6=4319601$.
We assume first that $\alpha=1$, so that we have the k1[1] estimate -

$$
k 1[1]=\sqrt{N} / 18=692.79
$$

If $\alpha<1$, then $\mathrm{k} 1[\alpha]$ increases to a value of $\operatorname{sqrt}(\mathrm{N}) / 36\}\{\alpha+1 / \alpha\}$.
Now carrying out the following computer search-
for k from 693 to 723 do $\left\{k, s q r t\left(\left(1+6^{*} k\right)^{\wedge} \mathbf{2 - 4}^{*}(4319601-k)\right)\right\} o d$
yields $\mathrm{R}=1017$ at $\mathrm{k}=713$. So we have our solution -

$$
[\mathrm{n}, \mathrm{~m}]=(1 / 2)(1+6(713) \pm 1017)=[1631,2648]
$$

which means that-

$$
155505643=\{6(1631)+1\}\{6(2648)+1\}=9787 \times 15889
$$

As a side benefit, we now know the value of α. It equals $\alpha=\operatorname{sqrt}(\mathrm{p} / \mathrm{q})=0.7848$.
If we had used this value of α instead of $\alpha=1$ then $k 1[0.7848]=713.22$ and so essentially matches the solution of $\mathrm{k}=713$. The advantage of using $\mathrm{k} 1[1]$ in our calculations is that we know for the $N \bmod (6)=1$ case that it offers a lower bound on the actual $k 1[\alpha]$ considerably larger than $\mathrm{k}=0$.

Another interesting point following from the $\mathrm{N} \bmod (6)=1$ case is that $\mathrm{k} 1[1]=\operatorname{sqrt}(\mathrm{N}) / 18$ for all positive integer semi=primes including the one hundred digit long Ns used in public key cryptography. So for a semi-prime of 100 digit length the k to be used in an integer search for R must be some 48 digit long or longer k1[1].

Consider next an N where $N \bmod (6)=5$. Such an example is-
$\mathrm{N}=3475379339=(6 \mathrm{n}-1)(6 \mathrm{~m}+1)$ where $\mathrm{N} \bmod (6)=5$ and $\operatorname{sqrt}(\mathrm{N})=58952.348$.
Here $\mathrm{A}=(\mathrm{N}+1) / 6=579229890, \mathrm{H}=0$ and $\mathrm{B}=(\mathrm{A}+\mathrm{h}) / 6=96538315$. Although the $\mathrm{k} 1[1]$ case is here equal to zero, one can use the neighboring value corresponding to $\alpha=0.8$. This yields the search starting point of $\mathrm{k} 1[0.8]=-736.90$. Carrying out a search with this last value leads to an integer $\mathrm{S}=20314$ at $\mathrm{k}=-858$. Thatvis it took 122 operations to find an integer answer.the rest of the problem is now easy. We have-

$$
[n,-m]=(1 / 2)\{(-6(858) \pm 20314\}=[7583,12731]
$$

From this result follows the factorization-

In both of the above case the factoring of nine and ten digit long semi-primes was fairly easy to accomplish compared to other existing methods such a elliptic curve factorization and generalized grid methods. It is very likely that even larger semi-primes can be factored by the present approach. To prevent rapid factorization will require that N have values of α lying in a range $0<\alpha<0.1$. There it becomes difficult to find a k1 close to k since α is not known before hand. The most consistent approach to factoring by the present method is to determine several different $\mathrm{k} 1[\alpha]$ values for a given N and then search within a limited range for integer solutions of R or S for a given $\mathrm{k} 1[\alpha]$. If no solution appears after a 10% search range proceed on to the next k1[α]. This stepping procedure will eventually lead to an integer solution for R or S and thus factorization. Here is a schematic of such a search method for the $N \bmod (6)=1$ case-

SEARCH RANGES FOR FINDING INTEGER R OR S

One can start the search for integer R or S within any of the boxes centered on a given k1[α].
U.H.Kurzweg

April 17, 2017

