FACTORIZING OF SEMI-PRIMES HAVING THE FORM N MOD(6)=1

In several earlier articles on this web page we have discussed factoring large semi-primes of the form \(N= pq \) where \(p=6n\pm1 \) and \(q=6m\pm1 \). We want here to look in greater detail at the case where \(N \mod(6)=1 \). This involves essentially two possibilities \(N=(6n+1)(6m+1) \) or \(N=(6n-1)(6m-1) \).

For these solution forms we get-

\[
6nm \pm (n+m) = (N-1)/6 = k
\]

We need to retain the plus or minus sign in front of \((n+m)\) since we don’t know beforehand which sign applies. We note that generally the term \(6nm \gg (n+m) \). This allows one to re-write things as –

\[
nm = \frac{1}{36} \{(N-1) \mp [(\alpha + \frac{1}{\alpha})\sqrt{N} + 2]\}
\]

where \(\alpha \) is a small unknown number lying between 0 and 1. Also \(p=\alpha \sqrt{N} \) and \(q=(1/\alpha)\sqrt{N} \) so that \(pq=N \). For large \(N \) the second term becomes negligible compared to the first so we get the integer approximation–

\[
nm = [(N-1)/36 - H/6] \quad \text{where} \quad H = k \mod(6) = [(N-1)/6] \mod(6)
\]

It allows us to state that –

\[
nm = [(N-1)/36 - H/6] + \epsilon = A + \epsilon
\]

where the term within the square bracket is termed \(A \) and is the integer value closest to \((N-1)/36\). The small integer \(\epsilon \) will have a minus sign when \(N=(6n+1)(6m+1) \) and a plus sign when \(N=(6n-1)(6m-1) \).

Going back to the original above expansion for \(N \), we can eliminate \(m \) to get-

\[
\frac{n[k \mp n]}{(6n \pm 1)} = A + \epsilon
\]

This is equivalent to the following quadratic in \(n \)-

\[
n^2 + n \{6(A + \epsilon) - k\} + (A + \epsilon) = 0
\]
where both positive and negative values of ε are allowed. For n to be an integer, we require that the radical:

$$R = \sqrt{6(A + \varepsilon) - k^2} - 4(A + \varepsilon)$$

be a positive integer. This is possible for values of ε in the two ranges where the parabola defined by the square of R is positive. We demonstrate this clearly via the following graph:

For $N=(6n+1)(6m+1)$ we start our R search with $-\varepsilon_0$, and we start the search when $N=(6n-1)(6n-1)$ using $+\varepsilon_0$. Here the εs are located as indicated on the graph.

To find the integer ε and its corresponding R we use the search programs:

```plaintext
for $\varepsilon$ from $-(\varepsilon_0+b)$ to $-\varepsilon_0$ do {evalf(R)}od;
```

and:

```plaintext
for $\varepsilon$ from $\varepsilon_0$ to $(\varepsilon_0+b)$ do {evalf(R)}od;
```
since we don’t know beforehand which of the N mod(6)=1 forms we are dealing with.

Having found the correct ε and R we can then go into the quadratic for n to get-

$$[n,m]=0.5\{(N-1)/6-6(A+\varepsilon)\pm R\}$$

From this will follow the prime components $[p,q]$.

Let us demonstrate the above outlined procedure for factoring three specific large semi-primes. The first of these will be-

$$N=2264221 \text{ where } k=(N-1)/6=377370 \text{ and } A=\left[(N-1)/36-k\text{mod}(6)/6\right]=62895$$

Ploting R versus ε shows that we should look for an integer R solution for $k< -83$ or $k>83$. Just five trials starting with $\varepsilon=-84$ produce the answer $R=166$ at $\varepsilon=-88$. So we have-

$$[n,m]=0.5\{6(62895-88)-372370 \pm 166\}=[181,347]$$

Hence-

$$p=6(181)+1=1087 \quad \text{and} \quad q=6(347)+1=2083$$

Notice that in this case we never had to look for the alternative possibility of $\varepsilon_0>+83$.

As a second example consider the $N \mod(6)=1$ semi-prime-

$$N= 455839 \text{ where } k=75973 \text{ and } A=12662$$

Here a plot of R^2 versus ε shows we should look at $\varepsilon>37$ and $\varepsilon<-37$. Doing so we find $R=27$ at $\varepsilon=+38$ using just one trial calculation. This in turn produces-

$$[n,m]=0.5\{6(A+38)-k^2\pm R\}=[100,127]$$

So we have the result-

$$p=6(100)-1=599 \quad \text{and} \quad q=6(127)-1=761$$

The speed with which this result was obtained is indeed impressive when compared to the alternate elliptic curve factorization method of Lenstra when applied to this same number.

As a last example we look at the nine digit long semi-prime satisfying $N \mod(6)=1$. It reads-
N = 468863683 with k = (N-1)/6 = 78143947 and A = (N-1)/36 - H/6 = 13023991

Here –

\[R = \sqrt{6(A + \varepsilon) - k)^2 - 4(A + \varepsilon)} \]

First plotting \(R^2 \) in the range \(-1500 < \varepsilon < 1500\) we get the following parabola this time given values for the coordinates-

Doing an evaluation about \(\varepsilon = \pm 1200 \), we find the solution \(R = 1883 \) at \(\varepsilon = -1243 \). So substituting into the quadratic for \(n \) we have-

\[[n,m] = [2788,4671] \]

This in turn allows us to write out the prime factors-

\[p = 6n + 1 = 16729 \quad \text{and} \quad q = 6m + 1 = 28027 \]

Note that the fact that \(\varepsilon \) is here negative means that \(p \) and \(q \) have the definitions indicated.

We have shown in the above that we can factor any size semi-prime \(N = pq \) of the form \(N \mod(6) = 1 \). The procedure consists of first finding a quadratic for \(n \) or \(m \), then plotting the square of the radical \(R \) associated with this quadratic to see what values of \(\varepsilon \) one
should use in starting a search for integer R. Once ε and R have been found, the rest of the calculation for $[n,m]$ and $[pq]$ becomes trivial. We are unaware of any extant factorization method which can match the speed and simplicity of the present approach.

U.H. Kurzweg
May 6, 2018
Gainesville, Florida