VARIATIONS ON THE FIBONACCI SEQUENCE

One of the best known mathematical sequences is that of Fibonacci .It reads-

$$
S(n)=\{1,2,3,5,8,13,21,33,54, \ldots, f[n]\}
$$

The elements $\mathrm{f}[\mathrm{n}]$ in this sequence are determined by a solution of the difference equation-

$$
\mathrm{f}[\mathrm{n}+2]=\mathrm{f}[\mathrm{n}+1]+\mathrm{f}[\mathrm{n}] \text { subject to } \mathrm{f}[1]=1 \text { and } \mathrm{f}[2]=2
$$

We have -

$$
\begin{aligned}
& f[3]=f[1]+f[2]=3 \\
& f[4]=f[1]+2 f[2]=5 \\
& f[5]=2 f[1]+3 f[2]=8 \\
& f[6]=3 f[1]+5 f[2]=13 \\
& f[7]=5 f[1]+8 f[2]=21 \\
& f[8]=8 f[1]+13 f[2]=34
\end{aligned}
$$

In matrix form this last set of equations may be written as-

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & 2 \\
2 & 3 \\
3 & 5 \\
5 & 8 \\
8 & 13
\end{array}\right] \cdot\left[\begin{array}{r}
f[1] \\
f[2]
\end{array}\right]=\left[\begin{array}{l}
f[3] \\
f[4] \\
f[5] \\
f[6] \\
f[7] \\
f[8]
\end{array}\right]
$$

The solutions to this equation are the Fibonacci Numbers $f[3]=3, f[4[=5, f[5]=8, f[6]=13$, $\mathrm{f}[7]=21, \mathrm{f}[8]=34$. Other sets of $\mathrm{f}[\mathrm{n}]$ values can be found by replacing the starting conditions $[12]^{\mathrm{T}}$ by say $[13]^{\mathrm{T}}$. This change leads to the Lucas Numbers $\{1,3,4,7,11,18,29,47, \ldots\}$.
Regardless of the starting conditions [$\mathrm{f}[1] \mathrm{f}[2]]^{\mathrm{T}}$ the ratio of $\mathrm{f}[\mathrm{n}+1] / \mathrm{f}[\mathrm{n}]$ as n goes to infinity equals the golden ratio $\varphi=(1+\operatorname{sqrt}(5)) / 2=1.6180339 \ldots$.

The purpose of this note is to look at some variations of the Fibonacci Sequence which appear not to have received attention in the literature. One such a modification is governed by the finite difference equation-

$$
\mathrm{f}[\mathrm{n}+4]=\mathrm{f}[\mathrm{n}+1]+\mathrm{f}[\mathrm{n}+2]+\mathrm{f}[\mathrm{n}+3] \text { subject to the starting values } \mathrm{f}[1], \mathrm{f}[2] \text {, and } \mathrm{f}[3] \text {. }
$$

The solution to this difference equation, good through f[9] , can be found in solving thris given in matrix form -
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4 \\ 4 & 6 & 7 \\ 7 & 11 & 13 \\ 13 & 20 & 24\end{array}\right] \cdot\left[\begin{array}{c}f[1] \\ f[2] \\ f[3]\end{array}\right]=\left[\begin{array}{c}f[4] \\ f[5] \\ f[6] \\ f[7] \\ f[8] \\ f[9]\end{array}\right]$

One can read off at once that $\mathrm{f}[8]=7 \mathrm{f}[1]+11 \mathrm{f}[2]+13 \mathrm{f}[3]$. So if we set $\mathrm{f}[1]=1, \mathrm{f}[2]=2$ and $\mathrm{f}[3]=3$, one finds $\mathrm{f}[8]=68$. The elements in this 6 by 3 matrix are generated as follows-

$$
a[n, 3]=a[n+1,1] \quad a[n, 1]+a[n, 3]=a[n+1,2] \quad a[n, 2]+a[n, 3]=a[n+1,3]
$$

So the elements in row $n=5$ become $7,4+7=11$ and $6+7=13$. The elements in the $7^{\text {th }}$ row would be $[24,37,44]$ and in the $8^{\text {th }}$ row would be $[44,68,81]$. For the specific starting conditions $f[1]=1, f[2]=2$ and $f[3]=3$, the solution sequence reads-

$$
S=\{1,2,3,6,11,20,37,68,125\}
$$

By increasing the number of rows in the left matrix above one gets the longer sequence-

$$
S=\{1,2,3,6,11,20,37,68,125,230,423,778,1431,2632,4841,8904,16377,30122, \ldots\}
$$

The ratio $\mathrm{R}=\mathrm{f}[\mathrm{n}+1] / \mathrm{f}[\mathrm{n}]$ of neighboring fs is given by looking at the ratio of neighboring elements in S. For the largest elements shown above we get $\mathrm{R}=30122 / 16377=1.8392868$. Using my PC the calculzate f[200] anf f[199] we get an improved ratio-
R=1.839286755214161132551852564653286600424178746097592246778758...

Note that this value is independent of the three starting values $\{\mathrm{f}[1], \mathrm{f}[2], \mathrm{f}[3]\}$. Here R plays the same role as does the golden ratio for the standard Fibonacci Sequence. Monotonically increasing sequences such as S above can be represented graphically as exponential spirals when neighboring elements are separated by a specified angle from each other. For $S=\{1,2,3,6.11,20,37,68,125\}$ we can use the exponential representation -

$$
\mathrm{r}=\mathrm{a} \exp (-\mathrm{b} \theta) \text { with } \mathrm{b}=(1 / \pi) \ln (125 / 11)] \text { and } \mathrm{a}=11 \exp (-\mathrm{b} \pi)
$$

provided that the angle separation between $\mathrm{f}[\mathrm{n}+]$ and $\mathrm{f}[\mathrm{n}\}=\pi / 4$. Here is the corresponding graph-

\bullet - points f[n]
$-r=0.968 \exp (0.7736$ theta $)$

As another variation on the Fibonacci Sequence, consider the difference equation-

$$
\mathrm{f}[\mathrm{n}+5]==\mathrm{f}\{\mathrm{n}+1]+\mathrm{f}[\mathrm{n}+2]+\mathrm{f}[\mathrm{n}+3]+\mathrm{f}[\mathrm{n}+4] \text { subject to } \mathrm{f}[1]=1, \mathrm{f}[2]=2, \mathrm{f}[3]=3 \text { and } \mathrm{f}[4]=4
$$

Here the first few terms in the corresponding sequence are -

$$
S=\{1,2,3,4,10,19,36,69,134,258,437, \ldots\}
$$

The corresponding coefficient matrix reads-

$$
M=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
2 & 3 & 4 & 4 \\
4 & 6 & 7 & 8 \\
8 & 12 & 14 & 15 \\
15 & 23 & 27 & 29
\end{array}\right]
$$

The elements $\mathrm{a}[\mathrm{n}, \mathrm{m}]$ in this matrix are easy to find. We have-

$$
a[n, 4]=a[n+1,1] a[n, 1]+a[n, 4]=a[n+1,2] a[n, 2]+a[n, 4]=a[n+1,3] a[n, 3]+a[n, 4]=a[n+1,4]
$$

So that the next row in the above matrix reads [29,44,52,56]. It says that-

$$
f[11]=29(1)+44(2)+52(3)+56(4)=497
$$

The ratio of $\mathrm{f}[\mathrm{n}+1] / \mathrm{f}[\mathrm{n}]$ as n gets large yields-
$\mathrm{R}=:=1.92756197548292530426190586173662216869855425516338472714664703 \ldots$

One suspects that this ratio will reach $\mathrm{R}=2$ for a difference equation of the form-

$$
f[n+m]=\sum_{k=1}^{m-1} f[n+k] \text { as } m \text { goes to infinity }
$$

This observation follows from the fact that $1.618<1.839<1.927$.
U.H.Kurzweg

Dec.7, 2018
Gainesville, Florida
Pearl Harbor+77

