FINDING LARGE SEMI-PRIMES

It is well known that any positive integer \(N \) may be decomposed into the product of one or more prime numbers. For example \(111 = 3 \times 37 \) and \(6479 = 11 \times 19 \times 31 \). When the number of factors is just one term (1 and \(N \) excluded) it is a prime number and when it factors in the product of two primes it is referred to as a semi-prime. An example the number 1237 is a prime while 2501 = 41 \times 61 \) is a semi-prime. A number with multiple factors such as 85085 = 5 \times 7 \times 11 \times 13 \times 17 \) is a composite. We want here to identify large semi-primes \(N = p \cdot q \) since these play a critical role in public key cryptography.

Our starting point is our earlier defined number fraction –

\[
f = \frac{\sigma(N) - (N+1)}{N}
\]

where \(\sigma(N) \) is the sigma function of number theory. The number fraction has zero value when \(N \) is a prime and a value greater than one when \(N \) is a composite number with multiple factors. A semi-prime will have a value near zero, but not zero. Typically if \(N \) is a \(k \) digit long semi-prime one can expect the value of \(f \) to equal about \(10^{-\frac{k}{2}} \). Furthermore, a semi-prime \(N \) must have its mod(6) operation yield a value of 1 or -1 since we know that all primes above 3 have the form \(6n \pm 1 \). In terms of our earlier defined hexagonal integer spiral we have the following diagram for the semi-prime \(N = 77 \) showing its components \(p = 11 \) and \(q = 7 \).

Performing a \(\text{mod}(6) \) operation on \(N = p \cdot q \) produces \((-1) = (-1)(+1)\). This shows why \(p \) and \(q \) lie along different diagonals in the graph. The \(f \) value for \(N = 77 \) is \(18/77 = 0.2337 \), and so is small but not zero.
We have run through a set of numbers \(N \) which are semi-primes and find the results shown in the following table:

<table>
<thead>
<tr>
<th>(N = pq)</th>
<th>(N \mod(6))</th>
<th>(f)</th>
<th>(p)</th>
<th>(p \mod(6))</th>
<th>(q)</th>
<th>(q \mod(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>-1</td>
<td>0.2337</td>
<td>11</td>
<td>-1</td>
<td>7</td>
<td>+1</td>
</tr>
<tr>
<td>391</td>
<td>+1</td>
<td>0.10230</td>
<td>23</td>
<td>-1</td>
<td>17</td>
<td>-1</td>
</tr>
<tr>
<td>12091</td>
<td>+1</td>
<td>0.018195</td>
<td>113</td>
<td>-1</td>
<td>107</td>
<td>-1</td>
</tr>
<tr>
<td>765469</td>
<td>+1</td>
<td>0.0026780</td>
<td>1559</td>
<td>-1</td>
<td>491</td>
<td>-1</td>
</tr>
<tr>
<td>8932479</td>
<td>+1</td>
<td>0.0008037</td>
<td>70949</td>
<td>-1</td>
<td>1259</td>
<td>-1</td>
</tr>
<tr>
<td>123456763</td>
<td>+1</td>
<td>0.000281264</td>
<td>30703</td>
<td>+1</td>
<td>4021</td>
<td>+1</td>
</tr>
<tr>
<td>3000000089</td>
<td>-1</td>
<td>0.0000471499</td>
<td>115469</td>
<td>-1</td>
<td>25981</td>
<td>+1</td>
</tr>
</tbody>
</table>

We picked these semi-primes by finding the lowest (non-zero) value of \(f \) for a given range of \(N \). Once such a value for \(f \) had been found, we next applied an `ifactor(N)` operation to get the components. Note that \(N, p \) and \(q \) always lie on either the \(6n+1 \) or \(6n-1 \) diagonal in the hexagonal integer plane. The \(\mod(6) \) values for \(N \) show that \(N \mod(6)=+1 \) implies that both \(p \) and \(q \) lie on the same diagonal while a \(N \mod(6)=-1 \) result says that \(p \) and \(q \) must lie on different diagonals. The values of \(f \) for these semi-primes decrease rapidly in value as the number of digits in \(N \) increases. We can estimate the value of \(f \) for a semi-prime by noting that:

\[
f(N) = \frac{p+q}{N} \approx \frac{2\sqrt{N}}{N} = \frac{2}{\sqrt{N}}
\]

since we know that \(q < \sqrt{N} < p \).

That is, the value of \(f \) for a semi-prime is approximately \(2/\sqrt{N} \). For the ten digit number 3000000089 we have a number fraction estimate \(f \approx 0.0000365 \). This is close to the exact value of \(f \) given in the above table. If \(f \) lies much above the approximation \(2/\sqrt{N} \) then we know we are dealing not with a semi-prime but rather with one having three or more prime factors. For example, \(N=453583 \) factors into four prime components \(13 \times 23 \times 37 \times 41 \) and has a value \(f=0.182264 \). If this where a semi-prime then the value of \(f \) should be near \(f=0.002969 \) and not 61 times larger.

We can summarize the above observations by noting that a semi-prime \(N=p \cdot q \) has the following properties:

1. It must be of the form \(6n+1 \) or \(6n-1 \), where \(n=1,2,3,.. \)
2. The value of its number fraction should lie near \(f=2/\sqrt{N} \).
3. If \(N \mod(6)=1 \) than both \(p \) and \(q \) must lie along the same diagonal. If \(N \mod(6)=-1 \) then \(p \) and \(q \) lie along different diagonals in the hexagonal spiral plane.

To test things out using these criteria for a large semi-prime consider the 12 digit long number \(N=460969682477 \). It has \(N \mod(6)=-1 \) and an \(f \) estimate of \(2/\sqrt{N}=0.000029457 \). Evaluating the actual \(f \) value yields \(f=[\text{sigma}(N)-(N+1)]/N =0.00000554281 \) and so we are close and one can conclude that \(N \) is a semi-prime. We can then proceed, using the technique discussed in earlier notes, to factor this number. It says essentially that –
\[p = \frac{N}{2} + \sqrt{\left(\frac{N}{2}\right)^2 - N} \]

Using the above values of \(N \) and \(f \) then yields \(p = 2359603 \) and \(q = \frac{N}{p} = 195359 \), so that-

\[460969682477 = 2359603 \times 195359 \]

The secret to a precise evaluation is to be able to find an accurate value of \(f = \frac{(p+q)}{N} \) quickly. This will no longer be possible when \(N \) has digit lengths above 50 or so. Note here that \(p = 6(393267) + 1 \) while \(q = 6(32560) - 1 \), so that \(p \) and \(q \) do indeed lie along different diagonals as predicted by (3).

June 1, 2013