
                GEOSYNCHRONOUS EARTH SATELLITES 
 
 
Perhaps the most important contribution of the world’s space efforts over the last half 
century has been the advent of geosynchronous earth satellites. These devices have made 
global communications  possible connecting every point on earth with any other point. 
Although the use of such satellites was mentioned as early as 1923 in Hermann Oberth’s 
book on space travel, it was the science fiction writer Arthur C. Clark who popularized 
the idea of geo-satellites for radio communication in 1945. The first near earth satellite 
(Sputnik) was launched in 1957 and the first successful geosynchronous satellite 
(Syncom2) was  placed  into earth orbit in 1963. Since that time hundreds of these 
satellites now exist in nearly circular orbits some 35,800 km above the earth’s equator. 
 
It is our purpose here to discuss the basic mechanics behind a satellite in geosynchronous 
orbit moving at speed rω at height r above the earth’s center. Here ω=dθ/dt matches the 
earth’s rotation rate so that the satellite will appear fixed above a given point along the 
equator. A schematic of the set-up is as shown- 
 

                    
 
In this picture we are looking at the earth and orbit from a point above the north pole so 
that the satellite and the earth  both rotate counterclockwise at the same angular speed ω. 
The basic equation governing the satellite motion is Newton’s Second Law F=ma. In 
polar coordinates this equation has the two components- 
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The second equation here is equivalent to the conservation of angular momentum (and 
also equivalent to Kepler’s Second  Law of  planetary motion). It reads- 
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For a pure circular orbit, the first equation reduces to- 
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since at the earth’s surface we have GmM/R2=mg. 
From this last result we can conclude that- 
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equals the height H at which a geosynchronous satellite must orbit above the equator. 
Substituting in the values of g=9.8066 m/s2, R=6.371x106 m, and 
ω=2π/(3600x24)=7.2722x10-5 r/s, we get- 
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Thus a geosynchronous satellite must be placed at a height of- 
 
    equatortheabovemileskmH 9.275,226.849,35627.510371.6 6   
 
This number is close to the value of H=35,786 km found in handbooks. 
 
You may have wondered why home TV satellite receivers always point approximately 
south at a fixed angle with respect to the horizon. This is because one is receiving the 
reflected signals from a particular geosynchronous satellite sitting above the equator 
(probably above Ecuador for east coast viewers). The angle above the horizon to which a 
parabolic receiver must be pointed is approximately equal to π/2-LAT, where LAT is the 
local latitude. Use of several of such satellites placed at equal distances around the 
equator makes possible almost instantaneous communication between any two places on 
earth (arctic regions excluded). A slight delay in such communications when they are 
two-way is noted because of the finite speed of light at c=3·108 m/s. For instance in a 
two-way conversation with live pictures  between Tahrir Square in Cairo and a home 
news office in New York, one can expect a delay of about  4L/c where c is the speed of 
light and L the distance from the sender or receiver to a geosynchronus satellite as shown 
in the figure- 



               
   
By the law of cosines we have  L2=(H+R)2+R2-2R(H+R)cos(θ), so that the delay will 
equal- 
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Now the great circle distance from Cairo to New York is about 9 million meters so that  
θ=9x106/(2R). Using R=6.37 x 106 m, H=35.8 x 106 m, and c=3 x 108 m/s, we have a 
time delay of τ=0.501 seconds. This approximate half second delay is noticeable when 
observing the reaction time of the reporters. However the picture quality is amazing. No 
one could have dreamed of being able to do this several decades ago. 
 
One can also use the above equations to find the orbit period τ=2π/ω of any satellite of 
mass m in a circular orbit about a much larger mass M. We have- 
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From this we note that the square of the period  is proportional to the cube of the distance 
to the center of the large mass M and also inversely proportional to M. This is essentially 
Kepler’s Third Law. We can use this result to calculate the mass of the earth M by  
measuring the period of any earth satellite in a circular orbit since the value of the 
universal gravitational constant G =6.6738·10-11 m3kg-1s-2   has been known since the 
time of Henry Cavendish(1731-1810). Sputnik was the first near earth satellite and its 
orbit period was about 96 minutes  with a  mean altitude of H=577 km. I remember 
getting up quite early one morning  back in October of 1957 when it was still dark  to 
watch this  satellite streak overhead. A very impressive sight. Let us see how we can use 
this data to find the earth’s mass. We have from the above formula that- 
 



      Mearth=4π2R3/Gτ2=4π2(6.371+0.577)3·1018/[6.6738·10-11·(96·60)2]=5.98 ·1024 kg 
 
This number is very close to the official value of 5.97 x 1024 kg. The small discrepancy is 
undoubtedly due to the average height H used when the actual height range for Sputnik in 
its elliptical orbit was 215km<H<939km.  
 
In a similar manner one can estimate the sun’s mass by letting  r be the mean distance 
from the sun to earth center of 1AU=149,597,871 km  and take the 1 year orbit time as 
τ=365.2421*24*3600=31,556,926 s. Solving, we find the sun-earth mass ratio to be- 
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The best estimates for the sun mass is 1.988 x 1030 kg compared to the earth’s mass of 
5.97 x 1024 kg. The ratio is 3.329 x 105, again in good agreement with the above. 
 
The period of a satellite orbiting the moon in a circular orbit  can be quickly calculated 
using Kepler’s Third Law that  τ2 is proportional to r3/M. The moon has a mass of Mmoon= 
7.342 x 1022 kg and a radius of  r moon= 1738 km . A geosynchronous satellite about the 
earth is located at r= R+H as already shown. So a satellite orbiting the moon at a few 
meters above the moon’s surface will have a period  given by – 
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yielding the value- 
 
                                   hourss 807.16507   
 
Most existing satellites which have orbited the moon have had highly elliptic orbits of 
large eccentricity and hence have orbit times differing considerably from this value. 
 
Finally, you will note that if one wanted to know the time τAst it takes to orbit a small 
asteroid of unknown mass MAst and unknown mean radius RAst , one could argue that the 
mass is proportional to the cube of the radius if composed of material similar to that of 
the earth. This would allow us to state that, for a circular orbit near the asteroid surface,  
the orbit period should be- 
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This is quite an interesting result since it requires no knowledge of the asteroid’s mass or 
radius other that the material should have the same composition as that of the earth and 
that the universal gravitational constant G remains the same everywhere in the universe.  



One could also reverse things and use the measured orbital period about an asteroid to 
find its density relative to the mean earth value of 5.52·103 kg/m3. 
 
 
 


