EVALUATING CERTAIN INTEGRALS EXTENDING FROM ZERO TO INFINITY

A little over two hundred years ago the famous German mathematician Karl Gauss came up with a method for evaluating elliptic integrals of the first kind $K(m)$ by what is now known as the AGM method. The essence of the method is the identity:

\[
K(m) = \frac{1}{\sqrt{1-m}} \int_{x=0}^{\infty} \frac{dx}{\sqrt{[1+x^2][(\frac{1}{\sqrt{1-m}})^2 + x^2]}} = \frac{1}{\sqrt{1-m}} \int_{0}^{\infty} \frac{dx}{M^2 + x^2} = \frac{\pi}{2M\sqrt{1-m}}
\]

where M is the geometric and arithmetic mean of 1 and $1/\sqrt{1-m}$ obtained by continuous iterations. Thus if $m=0.5$ we have $M=1.198140234$ formed from 1 and $\sqrt{2}$. It yields $K(0.5)=1.8540746\ldots$ The problem of integrating the product term in the radical of the first integral is thus reduced essentially to finding the value of M by algebraic methods.

It is natural to ask if this approach will work for other types of integrals with semi-infinite range. The quick answer is no as we will demonstrate below.

We begin with the related integral:

\[
I(a,b) = \int_{x=0}^{\infty} \frac{dx}{(a^2 + x^2)(b^2 + x^2)} = \frac{\pi}{2(a+b)ab}
\]

which has the exact value given. Note that the arithmetic mean is here $A_0=(a+b)/2$ and the geometric mean is $G_0=\sqrt{ab}$. So that we may write:

\[
I(a,b) = \frac{\pi}{4A_0G_0^2}
\]

If one now applies the iteration procedure of Gauss n times to generate A_n and G_n the two quantities will approach the same value M. Unfortunately the resultant equivalent integral:

\[
J(a,b) = \frac{\pi}{4M^3}
\]

is close but does not match exactly the value of $I(a,b)$. So for this integral the AGM method fails. We can however work backwards and ask what value N is required to make:

\[
\int_{x=0}^{\infty} \frac{dx}{(N^2 + x^2)^2} = \frac{\pi}{2(a+b)ab} = \frac{\pi}{4N^3}
\]

The answer is:
\[N = \left(\frac{a+b}{2}\right)^{1/3} = \{A_0 G_0\}^{1/3} \]

If we next let \(a = 1 \) and \(b = 2 \) we find-

\[I(1,2) = \int_0^\infty \frac{dx}{(3^{2/3} + x^2)^2} = \frac{\pi}{12} \]

In this case \(A_n = Q_n = 1.453679 \ldots \) as \(n \) gets large while \(1^{3/3} = 1.442295 \ldots \) So the AGM method fails.

Also if we take \(a = 3 \) and \(b = 5 \) we get \(N = 60^{1/3} \) and have the integral-

\[I(3,5) = \int_0^\infty \frac{dx}{(60^{2/3} + x^2)^2} = \frac{\pi}{240} \]

Here are some other related integrals whose value we know and which have a related form not recoverable by AGM methods-

\[R(a,b) = \int_0^\infty \frac{x dx}{(a^2 + x^2)(b^2 + x^2)} = \int_0^\infty \frac{dx}{\left[\frac{3}{\ln(4)} + x^2\right]^2} = \frac{\ln(2)}{3} \]

\[S(a,b) = \int_0^\infty \frac{x^2 dx}{(a^2 + x^2)(b^2 + x^2)} = \int_0^\infty \frac{x^2 dx}{\left[(a+b)^2 / 2 + x^2\right]} = \frac{\pi}{2(a+b)} \]

\[T(a,b) = \int_0^\infty \frac{(c^2 + x^2) dx}{(a^2 + x^2)(b^2 + x^2)} = c^2 I(a,b) + S(a,b) = \frac{\pi}{4(a+b)ab} (c^2 + ab) \]

We have shown via the above examples that AGM methods work only when the product term \((a^2 + x^2)(b^2 + x^2)\) appears as a square-root in the denominator of the type of integral considered by Gauss. Removing the radical form leads to other convergent solutions as long as the maximum power of \(x \) in the denominator of the integral exceeds the power of \(x \) in the numerator. Use of \(A_\infty = G_\infty \) seems to work only for integrals of the type capable of generating elliptic functions of the first kind \(K(m) \) which means a radical in the denominator of the integral.
U.H.Kurzweg
March 15, 2018
Ides of March