
            PROPERTIES OF THE LAMBERT FUNCTION W(z) 
 
 
 
The first order, non-linear, ODE- 
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can be solved by the simple integration- 
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to yield the implicit solution- 
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where W(z) is  the Lambert function. 
 
One can expand this function in a Taylor series- 
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to obtain- 
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A plot of W(z) for z=x in the range -0.3678<x<4 follows- 



                 
           
There are several direct applications of the Lambert function. One of the 
better known of these is in finding the limit of  an iteration connected with 
the tetration N^(N^(N^(N . Tetration of a number N can be represented by 
the iteration- 
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For this iteration to converge one must have that- 
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which is equivalent to- 
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Thus one has that  tetration for N=a[0]=i   yields a[∞]=0.43828293..+i 
0.36059247..  



 
Another place where the Lambert function is encountered is in the solution 
of the difference equation- 
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We try x(t)=exp(b t) to yield- 
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so that the equation yields the solution- 
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Also one can find certain values of z for which W(z) assumes  simple closed 
forms. Start with the function- 
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We find this function has the exact values F[1/sqrt(2)]=2, F[1]=1, and 
F[4]=0.5. From these results one can infer, for example, that- 
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This last result in turn suggests one try W[ ln(a)]=ln(b). This leads to- 
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from which follows that a=bb  so that we have the identities- 
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where c= ln(b). From these last identities follow the equalities- 
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Also by setting z=i, we obtain the identity- 
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