PROPERTIES OF THE LAMBERT FUNCTION W(z)

The first order, non-linear, ODE-

$$
\frac{d W(z)}{d z}=\frac{\exp [-W(z)]}{[1+W(z)]} \quad \text { subject to } W(0)=0
$$

can be solved by the simple integration-

$$
\int_{0}^{z} d z=\int_{0}^{W(z)}[1+W(z)] \exp [1+W(z)] d W(z)
$$

to yield the implicit solution-

$$
z=W(z) \exp [W(z)]
$$

where $\mathrm{W}(\mathrm{z})$ is the Lambert function.
One can expand this function in a Taylor series-

$$
W(z)=W(0)+\frac{d W(0)}{d z} z+\frac{d^{2} W(0)}{d z^{2}} \frac{z^{2}}{2!}+\ldots
$$

to obtain-

$$
W(z)=z-z^{2}+\frac{3 z^{3}}{2}-\frac{8 z^{4}}{3}+O\left(z^{5}\right)=\sum_{n=1}^{\infty} \frac{(-n)^{n-1}}{n!} z^{n}
$$

A plot of $\mathrm{W}(\mathrm{z})$ for $\mathrm{z}=\mathrm{x}$ in the range $-0.3678<\mathrm{x}<4$ follows-

There are several direct applications of the Lambert function. One of the better known of these is in finding the limit of an iteration connected with the tetration $\mathrm{N}^{\wedge}\left(\mathrm{N}^{\wedge}\left(\mathrm{N}^{\wedge}(\mathrm{N}\right.\right.$. Tetration of a number N can be represented by the iteration-

$$
a[n+1]=N^{a[n]}=\exp (a[n] \ln N) \text { with } a[0]=N
$$

For this iteration to converge one must have that-

$$
a[\infty] \exp \left(a[\infty] \ln \left(\frac{1}{N}\right)\right)=1
$$

which is equivalent to-

$$
a[\infty]=\frac{W\left(\ln \frac{1}{N}\right)}{\ln \left(\frac{1}{N}\right)}
$$

Thus one has that tetration for $\mathrm{N}=\mathrm{a}[0]=\mathrm{i}$ yields $\mathrm{a}[\infty]=0.43828293 . .+\mathrm{i}$ 0.36059247 ..

Another place where the Lambert function is encountered is in the solution of the difference equation-

$$
\frac{d x(t)}{d t}=c x(t-1)
$$

We $\operatorname{try} \mathrm{x}(\mathrm{t})=\exp (\mathrm{b} \mathrm{t})$ to yield-

$$
b=c \exp (-b) \text { or equivalent } b=W(c)
$$

so that the equation yields the solution-

$$
x(t)=\exp [W(c) t]
$$

Also one can find certain values of z for which $\mathrm{W}(\mathrm{z})$ assumes simple closed forms. Start with the function-

$$
F(z)=\frac{W(\ln (z))}{\ln (z)}=\exp (-W(\ln (z))
$$

We find this function has the exact values $\mathrm{F}[1 / \mathrm{sqrt}(2)]=2, \mathrm{~F}[1]=1$, and $F[4]=0.5$. From these results one can infer, for example, that-

$$
W(2 \ln 2)=\ln (2) \text { and } W\left[\ln \left(\frac{1}{\sqrt{2}}\right)\right]=-\ln (2)
$$

This last result in turn suggests one try $\mathrm{W}[\ln (\mathrm{a})]=\ln (\mathrm{b})$. This leads to-

$$
W[\ln (a)] \exp W[\ln (a)]=\ln (b) \exp (\ln (b))=\ln (a)
$$

from which follows that $\mathrm{a}=\mathrm{b}^{\mathrm{b}}$ so that we have the identities-

$$
W(b \ln b)=\ln (b) \text { and } W[c \exp (c)]=c
$$

where $c=\ln (b)$. From these last identities follow the equalities-

$$
W[\exp (1)]=1, W[\exp (-1)]=-1, W\left(\frac{-\pi}{2}\right)=i \frac{\pi}{2}
$$

Also by setting $\mathrm{z}=\mathrm{i}$, we obtain the identity-

$$
\pi=-2 i\{W(i)+\ln [W(i)]\}
$$

