
  
CALCULATING THE VALUES OF THE SIX MOST IMPORTANT         

MATHEMATICAL COSTANTS USING SEVERAL NEW APROACHES 
 
 

Mathematics contains many constants of an irrational nature. The most important 
of these are – 
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We want here to calculate the value of these numbers using some new 
approaches not relying on the standard infinite series summations 
which in most cases are slowly convergent.  
 
SQUARE ROOT OF TWO: 
 
Let us begin with the root of two. Here we first write- 
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Expanding this equality as a continued fraction we get- 
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We next iterate this result by replacing the left term by S[n+1] and the 
right by{A(k)+B(k)S[n]}/{C[k]+D[k]S[n] , with k being the number 
of terms taken in the continued fraction. Doing this we get the 
following table- 
 

k 1 2 3 4 5 6 7 8 9 10 
A{k) 2 4 10 24 58 140 338 816 1970 4756 
B(k) 1 3 7 17 41 99 239 577 1393 3363 
C(k) 1 3 7 17 41 99 239 577 1393 3363 



D(k) 1 2 5 12 29 70 169 408 985 2378 
 
The larger k is taken the faster the iteration will converge to sqrt(2). 
You will note that B(k)=C(k), A(k)=2D(k), and 
B(k+1)=A(k)+B(k)+C(k) . Taking k=10 we get the rapidly convergent 
iteration formula- 
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Starting with S[1]=1.5 we get the following results- 

 
In these calculations we have terminated the values of S[n] where they 
first depart form sqrt(2). It is seen that for S[14] we get the hundred 
digit accurate result- 
 

3276415738850387534784621070373799073248073176679

9496718753760969807856801688724223730950481.414213562   

 

GOLDEN RATIO : 
 



After the root of two, the golden ratio, thought by the ancient Greeks as the ideal 
ratio of height to width of a picture frame, is the easiest to calculate numerically 
to any order of accuracy. Its mathematical definition is- 
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So we need only determine the root of five to get its value. Root five satisfies the 
identity- 
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This result may be expressed as the continued fraction- 
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   This allows us to set up the iteration formula- 
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starting with S[1]=2. The values of the constants A through D are given in the 
following table- 
 

k 1 2 3 4 5 6 7 
A(k) 5 20 85 360 1525 6460 27365 
B(k) 2 9 38 161 682 2889 12238 
C(k) 2 9 38 161 682 2889 12238 
D(k) 1 4 17 72 305 1292 5473 

               
 
Note here B(k)=C(k), A(k)=5D(k), and B(k+1)=A(k)+2B(k). Using the iteration 
formula corresponding to k=7 we find – 
 
S[13] := 
2.2360679774997896964091736687312762354406183596115257242708972454
10520925637804899414414408378782275 
 
This corresponds precisely with the first 100 digits of sqrt(5). Using this result we 
get the golden ratio to equal- 
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This also has one hundred digit accuracy. 
 
 
EXPONENTIAL EXP(1): 
 
This irrational number represents the base for natural logarithms with the property 
that the derivative of exp(x) equals to itself. One usually writes exp(1) as the letter 
e. Its evaluation is pretty rapid even when  using the infinite series representation- 
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The factorial makes the convergence quite rapid. To get a hundred digit accuracy 
one needs to sum this series up to n!=10100. This means the first seventy terms. An 
alternate way which is much simpler for finding exp(1) is to note that the integral- 
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Here P2nx are the even Legendre polynomials which oscillate rapidly as n gets 
large while the hyperbolic cosine varies rather slowly in 0<x<1. The N(n) and 
M(n)) are polynomials in n. As n gets large the integral K(n) approaches zero 
leaving one with the approximation- 
 
                          exp(1)=eN(n)/M(n) 
 
For n=15 we find- 
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which is accurate to 100 decimal places. The reason this approach is so accurate 
stems from the fact that the oscillatory nature of the Legendre polynomials 
guarantees that the integral K(n) is essentially zero when n gets large. 
 

VALUE OF : 
 
Here again we make use of even Legendre polynomials and note that - 
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To get a 100 digit accuracy one must go to n=62. On setting K[62] to zero, one 
finds- 
 
   

21170682803482534286208998623078164062097494459

105871693993757950288419462643383235897932383.14159265

            
To reduce the number n for the Legendre polynomials one needs to increase the 
term 1 in the denominator of the integral. Replacing 1 by 3 allows one to reduce n 
to 50 for the same 100 digit accuracy. Also one can use the sum of multiple arctan 
series in conjunction with Legendre polynomials to get the same accuracy with a 
further reduction in n. Several decades ago we came up with the interesting 
identity- 
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, which has all positive terms. The denominators in the arctan functions are all 
large integers. Using the Legendre polynomial approach on this last equation for 
n=26 produces the same one-hundred digit accurate result for . 
 
 
NATURAL LOGARITHM OF TWO: 
 
Another of the six most encountered  mathematical constants is the natural 
logarithm of two. We can define this number as- 
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The series expansion to the right of the integral is also known as the Gregory 
series . It is notoriously slow in converging although its alternating character 
allows one to state that – 
 
                                 0.5<ln(2)<0.8333.. 
 
To improve the convergence rate we first look at the series- 
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This series converges most rapidly as x approches zero So if we want to find ln(2) 
we need to use an identity of the form- 
 
                 2=1+x=AB/CD 
 
making sure A, B, C,and D remain near one each. One possibility is A=B=1.2 and 
C=0.8 with D=0.9. This yields the identity- 
 
               ln(2)=2ln(1.2)-ln(0.8)-ln(0.9) 
 
We can now estimate the values of the three logarithms by looking at- 
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for a=5,-5, and -10. For 100 digit accuracy we need to choose n=96. This 
produces the result- 
 
 

68933269964189471560586393621969606800094936025525412

5001343817656807517232121455599453094.693147180)2ln( 

 
 EULER-MACHERONI CONSTANT  : 
 
This constant was  studied in detail by Leonard Euler(1734) and later by Lorenzo 
Macheroni.It represents essentially the area between, the staircase function 
S(n)=1/n  and ln(n) as n goes to infinity. Mathematically the definition reads- 
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where () means the Euler Constant . The function  (n) converges very slowly 
toward    and so is not used for finding  to high accuracy. However there is an 
alternate integral approach which quickly produces the value of  to high 
accuracy. The procedure for doiung this is to first define the Psi(x) function- 
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Then setting x=0 one obtains- 
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On substituting  exp(-t)=u, we get the definite integral- 
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This integral needs only be evaluated over the finite range 0<u<1 and can be 
evaluated to any order of accuracy. To 100 places we get- 
 
            
=0.57721566490153286060651209008240243104215933593992359880576723
48848677267776646709369470632917467492 
 
 
 
SUMMARY: 
 
We have found the values to one hundred places for the six most important 
irrational constants arising in mathematics. The approach used is an 
unconventional one involving an iteration approach where the S[n+1] iteration is  
expressible as the linear fractional form (A+BS[n])/(C+dS[n]) and values of the 
remaining numbers are determined by using integrands of rapidly oscillating 
Legendre polynomials and slower varying functions of x. These  techniques 
should continue to hold for any order of accuracy. 
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