The factoring of large semi-primes continues to be of major interest in connection with public key cryptography. Such numbers have the form $N=pq$, where p and q are prime numbers to be determined. Our purpose here is to look at an alternate new way to factor such semi-primes when N becomes large.

As we have already shown in several earlier notes, all primes p and q, whenever both are greater than 3, must have the form-

$$p=6n\pm1 \quad \text{and} \quad q=6m\pm1$$

The choice of sign is dictated by the form of N which must also always have the form $N=6k\pm1$. When $N \mod(6)=1$, we must have-

$$p=6n+1 \quad \text{and} \quad q=6m+1 \quad \text{or} \quad p=6n-1 \quad \text{and} \quad q=6m-1$$

When $N \mod(6)=5$, we must have –

$$p=6n+1 \quad \text{and} \quad q=6m-1 \quad \text{or} \quad p=6n-1 \quad \text{and} \quad q=6m+1$$

Any semi-prime will have primes p and q satisfying one of these four possibilities.

Let us work out in more detail these four possible cases-

1. $N \mod(6)=1$ with $p=6n+1$ and $q=6m+1$: Multiplying things together produces-

$$N=36nm+6(n+m)+1 = 9[(m+n)^2-(m-n)^2]+6(n+m)+1$$

On letting $A=n+m$ and $B=m-n$ we have-

$$B = \frac{\sqrt{(3A+1)^2 - N}}{3}$$

From this last equation one sees at once that $A>\lfloor\sqrt{N}-1\rfloor/3$ and that the right hand side RHS must be a positive integer since B is required to be such.

2. $N \mod(6)=1$ with $p=6n-1$ and $q=6m-1$: Some manipulations here produce-

$$B = \frac{\sqrt{(3A-1)^2 - N}}{3}$$

3. $N \mod(6)=5$ and $p=6n-1$ with $q=6m+1$: We find-
\[B = \frac{-1 + \sqrt{9A^2 - N}}{3} \]

(4) \(N \mod(6) = 5 \) with \(p = 6n + 1 \) and \(q = 6m - 1 \): This time we have-

\[B = \frac{1 + \sqrt{9A^2 - N}}{3} \]

Since \(A = n + m \) and \(B = n - m \) will always be integers, it is necessary that the right hand sides (RHS) of the above four possible values of \(B \) all have the form of real positive integers.

Let us now consider some specific examples. Take first the simple case of \(N = 403 \) where \(\sqrt{N} = 20.0748 \) and \(N \mod(6) = 1 \). This means \(N = 6(67) + 1 \) and we can try \(p = 6n + 1 \) and \(q = 6m + 1 \) which represents form (1) above. Accordingly \(\text{RHS} = \sqrt{(3A + 1)^2 - 403} / 3 \). For \(\text{RHS} \) to remain real it is necessary that \(A > \left[\sqrt{403} - 1 \right] / 3 = 6.358 \). So starting with \(A = 6 \) we get the following table-

<table>
<thead>
<tr>
<th>(A = n + m)</th>
<th>(B = \sqrt{(3A + 1)^2 - N} / 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(\sqrt{-42} / 3)</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>(\sqrt{222} / 3)</td>
</tr>
</tbody>
</table>

So after just two trials we have found \(A = n + m = 7 \) and \(B = m - n = 3 \). We get \(n = 2 \) and \(m = 5 \). This in turn yields the factored result \(p = 31 \) and \(q = 13 \). Since this form already gave a correct answer it is not necessary to go on to the second possibility (2).

Let us next take the historically interesting semi-prime \(N = 455839 \) which is often used to demonstrate the Lenstra elliptic curve factorization method. Here \(N = 6(6n - 1) + 1 \) and \(N \mod(6) = 1 \). Let us try case (2) above. This means \(\text{RHS} = \sqrt{(3A - 1)^2 - N} / 3 \) and we should start the search near \(A = \left[1 + \sqrt{N} \right] / 3 = 225.386 \). Doing so we get the following table-

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B = \sqrt{(3A - 1)^2 - N} / 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>(\sqrt{-1563} / 3)</td>
</tr>
<tr>
<td>226</td>
<td>(\sqrt{2490} / 3)</td>
</tr>
<tr>
<td>227</td>
<td>27</td>
</tr>
</tbody>
</table>

So after just three trials we find the integer solutions \(A = 227 \) and \(B = 27 \). This is equivalent to \(p = 599 \) and \(q = 761 \) and leads at once to the factored result-

\[455839 = 599 \times 761 \]

The procedure is clearly much shorter (in this case) than the elliptic curve factorization method itself.

As a third example consider the Mersenne Number \(N = 2^{11} - 1 = 2047 \) which has \(N \mod(6) = 1 \). Here we choose \(N = (6n - 1)(6m - 1) \) as covered by approach (2) above. It says \(A > \left[\sqrt{N} + 1 \right] / 3 = 15.41 \). Trying \(A = 16, 17, 18, \) and
19, we find the integer solution $A=m+n=19$ and $B=m-n=11$. This means $n=4$ and $m=15$. Hence the number factors into-

$$2047 = [6(4)-1][6(15)-1] = 23 \times 89$$

So just four trials have produced a factoring.

Although all of the above examples gave rapid solutions requiring only a few trials, this will generally not be the case when N gets very large and/or A and B are nearly equal. An example of such a number is the Fermat Number-

$$N=2^{32}+1=4294967297 = 641 \times 6700417$$

For this number $N \mod(6)=5$ and $641 \mod(6)=5$ and $6700417 \mod(6)=1$. It suggests $p=6n-1$ and $q=6m+1$ which leads to-

$$B = \frac{-1 + \sqrt{9A^2 - N}}{3}$$

with $A>\sqrt{N}/3=7415.953$. Since we already have given the factors p and q, we know that $n=107$ and $m=1116736$. So we have $A=1116843$ and $B=1116629$. These two integers are almost equal and thus one would expect the need for many trials starting with the minimum of $A=7416$. Indeed it would require a little over a million trials $1116843-7416=1109427$. Clearly this is impractical and one must look for an alternative route. One way to sometimes get around the problem is to look at exponential forms of different As and then multiply some of these together so that the radical becomes a perfect square. This is the approach used by most quadratic sieve approaches employed in factoring large semi-primes. The drawback of this approach is that it is often difficult to find product of several different As so that they make $9A^2-N$ a perfect square. In theory it’s a good approach, but in practice becomes so cumbersome that no one has at this date managed to factor 500 digit long semi-primes by this method despite of intensive efforts including long runs on the world’s fastest super-computers. We suggest here an alternate (but brute force) approach using a new integer $C=A-B=2n$ and noting that $A+B=2m$. For the Fermat Number $N=2^{32}+1$ or other numbers of the type $N \mod(6)=5$, this produces the equations-

$$A = \frac{N + (3C - 1)^2}{6(3C-1)} \quad , \quad B = \frac{N + 1 - 9C^2}{6(3C-1)}$$

We can now pick a range of Cs to find integer values of A and B. A simple computer search using $N=2^{32}+1$ produces the integer solutions-

$$C=214 , \quad A=1116843 , \quad B=1116629$$

and requires just 214 trials to find. These integer values produce $n=107$ and $m=6699881$. Thus the Fermat number factors as-

$$2^{32}+1 = : = 4294967297 = 641 \times 6700417$$
This approach will work for any of the four cases defined above. They will each produce their own version of the following equations:

\[A = f(C, N) \quad \text{and} \quad B = g(C, N) \]

One then simply searches for the integer value of \(C \) for which \(A \) and \(B \) are also simultaneously integers.

The following table summarizes the functional forms \(f(C, N) \) and \(g(C, N) \) for the four cases -

<table>
<thead>
<tr>
<th>Form of (p) and (q)</th>
<th>(A = f(C, N))</th>
<th>(B = g(C, N))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p = 6n + 1, q = 6m + 1)</td>
<td>(\frac{N - 1 + 9C^2}{6(3C + 1)})</td>
<td>(\frac{N - (3C + 1)^2}{6(3C + 1)})</td>
</tr>
<tr>
<td>(p = 6n - 1, q = 6m - 1)</td>
<td>(\frac{N - 1 + 9C^2}{6(3C - 1)})</td>
<td>(\frac{N - (3C - 1)^2}{6(3C - 1)})</td>
</tr>
<tr>
<td>(p = 6n - 1, q = 6m + 1)</td>
<td>(\frac{N + (3C - 1)^2}{6(3C - 1)})</td>
<td>(\frac{N + 1 - 9C^2}{6(3C - 1)})</td>
</tr>
<tr>
<td>(p = 6n + 1, q = 6m - 1)</td>
<td>(\frac{N + (3C + 1)^2}{6(3C + 1)})</td>
<td>(\frac{N + 1 - 9C^2}{6(3C + 1)})</td>
</tr>
</tbody>
</table>

Notice that none of these involve the taking of radicals as in the earlier cases, but simply represent the ratio of two polynomials in \(C \).

The one line program used in the solution search is-

\[
\text{N:=given value ; A:=f(C,N); B:=g(C,N); for } C \text{ from a to b find } \{C,A,B\} \text{ od;}
\]

Here \(a < C < b \) is a range of \(C \) chosen. Typically \(a = 1 \) and \(b \) must be less than \((-1 + \sqrt{N})/3 \) if we demand that \(p = 6n + 1 < \sqrt{N} \). One can place \(a \) and \(b \) (where \(a < b \)) anywhere in the region \(1 < C < [-1 + \sqrt{N}]/3 \), so that smaller chunks of \(a \) to \(b \) can be tested separately.

Let us demonstrate this last technique in more detail for the relatively easy example of-

\[N = 2623 = 43 \times 61 \]

Here \(N \mod(6) = 1 \), \(43 \mod(6) = 1 \), and \(61 \mod(6) = 1 \). This means \(p = 6n + 1 \) and \(q = 6m + 1 \) with \(n = 7 \) and \(m = 10 \). Also \(\sqrt{N} = 51.215 \). Let us pretend that we don’t know the values of \(p \) and \(q \). We then have from the above table-

\[
A = f(C, N) = \frac{9C^2 + N - 1}{6(3C + 1)} \quad \text{and} \quad B = g(C, N) = \frac{N - (3C + 1)^2}{6(3C + 1)}
\]

The three quantities \(A, B, \) and \(C \) must all be positive real integers. The upper limit on \(C \) is \([-1 + \sqrt{N}]/3 = 16.738 \). We thus have our search routine given by-

\[
\text{for } C \text{ from 1 to 17 do } \{C,A,B\} \text{ od;}
\]

It yields the only possible all integer solution \(\{C,A,B\} = [14, 3, 17] \) in the given range. Hence \(m = (17 + 3)/2 = 10 \) and \(n = (17 - 3)/2 = 7 \). Thus the desired solution \(p = 43 \) and \(q = 61 \) has been obtained. We can also look at the graphical version of this solution as shown in the following figure-
It is only for the integer value of $C=14$ that integer values for A and B are found simultaneously. These values are $A=17$ and $B=3$.

The advantage of the present approach to factoring semi-primes is that we can look at calculation chunks $a<C<b$ anywhere in $1<C<\left[1+\sqrt{N}\right]/3$. For instance if we had chosen the chunk of C in the range $13\leq C\leq 15$, the output containing the desired integer solution can be summarized as:

<table>
<thead>
<tr>
<th>C</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1381/80</td>
<td>341/80</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>1549/92</td>
<td>169/92</td>
</tr>
</tbody>
</table>

So only two trials are necessary to find the integer solutions compared to 14 trials in the initial calculation.

To get a better feel for the integer solutions A, B, and C we can look at the following 1D graph-
We see that C equals the distance between A and B and is always an even number. It can become large as the semi-prime $N=pq$ becomes large. However the fact that in the search process A and B can be evaluated over limited chunks for C makes the process manageable. Remember that the full trial range is $1 < C < \left(-1 + \sqrt{N}\right)/3$. Probably a good starting point for factoring a typical large semi-prime is an integer C close to $\left(-1 + \sqrt{N}\right)/6$. Only even values of C need to be considered in the trials.

As one last example consider factoring $N=640081$ where $\sqrt{N}=2529.8$ and mod$(6)=1$. So trying $p=6n+1$ and $q=6m+1$ we know $1 < C < 842$. So we start our trials with a chunk $400 < C < 500$. It produces the integer solution $C=482$, $A=978$, and $B=496$. From this follows at once the factored result:

$$640081 = 1447 \times 4423$$

We point out that in the above procedure for finding A and B for a given C requires a solution of just $A=f(C,N)$ or of $B=g(C,N)$ since, by the definition of $C=A-B$, we can always recover the other. It should also not be forgotten that sometimes the alternate approach of $B=F(A,N)$ involving square roots will work as well or even better than $C=g(B,N)$.