VALUES OF THE NUMBER FRACTION $f(N)$ WHEN $N>>1$

In several recent articles we have discussed the properties of a new function-

$$f(N) = \frac{\sigma(N) - (N + 1)}{N}$$

, where $\sigma(N)$ is the divisor function representing the sum of all divisors of the integer N. One can write the value of $\sigma(N)$ as-

$$\sigma(N) = \prod_{n=1}^{m} \left(\frac{p_n^{a_n+1} - 1}{p_n - 1} \right)$$

, where p_ns are the prime factors of N, a_n the exponent of p_n, and m the total number of prime factors in N. We term the function $f(N)$ the **Number Fraction**. It has the interesting property that it vanishes whenever N is a prime number but is always positive when N is a composite. When $N=p^n$, where p is a prime and n any positive integer, the number fraction reduces to-

$$f(p^n) = \frac{(1 - p^{1-n})}{(p - 1)}$$

This number approaches $1/p$ for $n \geq 2$ as p gets large. For the special case of $N=2^n$ we have-

$$f(2^n) = 1 - \frac{2}{2^n}$$

, which approaches a value of one as n gets large.

A question which now arises is –‘Does the value of $f(N)$ have a maximum or not as N gets large?’ . The above two examples suggest it may have, however, one can not be sure. The simplest way to test things out is to actually evaluate $f(N)$ over a range of Ns to see how large $f(N)$ becomes in that range. Marking down some of the local maxima of $f(N)$ found over the range $3<N<500,000$, we have the results-

<table>
<thead>
<tr>
<th>N</th>
<th>ifactor(N)</th>
<th>$f(N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>$2^2 \cdot 3 \cdot 5$</td>
<td>1.7833</td>
</tr>
<tr>
<td>180</td>
<td>$2^2 \cdot 3^2 \cdot 5$</td>
<td>2.0277</td>
</tr>
<tr>
<td>840</td>
<td>$2^4 \cdot 3 \cdot 5 \cdot 7$</td>
<td>2.4273</td>
</tr>
<tr>
<td>2520</td>
<td>$2^3 \cdot 3^2 \cdot 5 \cdot 7$</td>
<td>2.7138</td>
</tr>
<tr>
<td>15120</td>
<td>$2^4 \cdot 3^3 \cdot 5 \cdot 7$</td>
<td>2.9364</td>
</tr>
<tr>
<td>443520</td>
<td>$2^6 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$</td>
<td>3.3051</td>
</tr>
</tbody>
</table>
This table shows that the local maxima of \(f(N) \) are slowly increasing functions of \(N \). Furthermore the value of \(f(N) \) will have local maxima when the ifactor of \(N \) contains all the lowest prime numbers through \(m \) with decreasing powers \(p_n \). We may define a new number \(N(m) \) whose value approximates the prime product forms shown in the table. This number reads-

\[
N(m) = \prod_{n=1}^{m} (p_n)^{m+1-n} = 2^m \cdot 3^{m-1} \cdot 5^{m-2} \ldots
\]

Thus –

\[
N(8) = 2^8 \cdot 3^7 \cdot 5^6 \cdot 7^5 \cdot 11^4 \cdot 13^3 \cdot 17^2 \cdot 19^1 = 25968760179275365452000000
\]

which yields the value \(f(8) = 4.817111172\ldots \). Going to an even larger sixty-eight digit number \(N(12) \), we find \(f(N)= 5.718018580\ldots \). It is not clear from these last two results that the local \(f(N) \) maxima will become unbounded as \(N \to \infty \).

As already pointed out in an earlier note, the local maxima in \(f(N) \) are represented by numbers divisible by \(6=2 \cdot 3 \). This fact is confirmed by the above table. Also one finds that \(N+1 \) or \(N-1 \) are often prime numbers. In the above case for \(N(12) \) we find \([N(12)+1]\) is a prime. It reads-

\[
p = 55784440720968513813368002533861454979548176771615744085560000000001
\]

Other large primes are found for \(N(15)+1 \), \(N(33)-1 \), and \(N(35)+1 \).

To demonstrate the local maximum property of \(f(N) \), we present a graph of the number fraction in the neighborhood of \(N(5) \). Here is the figure-
Note the sharp peak in the value of $f(N)$ at $N(5)=174636000$ and the prime at $N=N(5)+1$. The local maximum in graphs like this one show that N is there equal to a super-composite having a large number of factors. The factors for $N(3)=2^3 \cdot 3^2 \cdot 5^1 = 360$ are:

\{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360\}

producing $f(360)=2.24722\ldots$

December 2013