POWER TOWERS AND THE TETRATION OF NUMBERS

Several years ago while constructing our newly found hexagonal integer spiral graph for prime numbers we came across the sequence-

$$
S=\left\{i, i^{i}, i^{i^{i}}, \ldots\right\},
$$

Plotting the points of this converging sequence out to the infinite term produces the interesting three prong spiral converging toward a single point in the complex plane as shown in the following graph-

An inspection of the terms indicate that they are generated by the iteration-

$$
z[n+1]=i^{z[n]} \text { subject to } z[0]=0
$$

As n gets very large we have $\mathrm{z}[\infty]=\mathrm{Z}=\alpha+\mathrm{i} \beta$, where $\alpha=\exp (-\pi \beta / 2) \cos (\pi \alpha / 2)$ and $\beta=\exp (-\pi \beta / 2) \sin (\pi \alpha / 2)$. Solving we find -

$$
\mathrm{Z}=\mathrm{z}[\infty]=0.4382829366+\mathrm{i} 0.3605924718
$$

It is the purpose of the present article to generalize the above result to any complex number $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ by looking at the general iterative form-

$$
\mathrm{z}[\mathrm{n}+1]=(\mathrm{a}+\mathrm{ib})^{\mathrm{z}[\mathrm{n}]} \text { subject to } \mathrm{z}[0]=1
$$

Here $\mathrm{N}=\mathrm{a}+\mathrm{ib}$ with a and b being real numbers which are not necessarily integers. Such an iteration represents essentially a tetration of the number N. That is, its value up through the nth iteration, produces the power tower-

$$
{ }^{n} Z=Z^{Z^{z^{Z}}} \text { with } \mathrm{n}-1 \text { zs in the exponents }
$$

Thus-

$$
{ }^{4} 2=2^{2^{2^{2}}}=2^{16}=65536
$$

Note that the evaluation of the powers is from the top down and so is not equivalent to the bottom up operation $4^{4}=256$. Also it is clear that the sequence $\left\{{ }^{1} 2,{ }^{2} 2,{ }^{3} 2,{ }^{4} 2, \ldots\right\}$ diverges very rapidly unlike the earlier case $\left\{{ }^{1} i,{ }^{2},{ }^{3},{ }^{3},{ }^{4} i, \ldots\right\}$ which clearly converges.

The simplest way to check whether the $\mathrm{z}[\mathrm{n}+1]$ iteration converges or diverges is to run the iteration for a given complex number $\mathrm{N}=\mathrm{a}+\mathrm{ib}$ to a large value n and then look at the quotient-

$$
Q[n]=\frac{1}{\lim n \gg 1} a b s\left\{\frac{z[n+1]}{z[n]}\right\}
$$

If the quotient equals one then we have convergence, otherwise not.
Consider now the case $\mathrm{N}=\operatorname{sqrt}(2)$ with $\mathrm{z}[0]=1$. Here $\mathrm{z}[1]=\operatorname{sqrt}(2)$,
$z[2]==\sqrt{2}^{\sqrt{2}}, z[3]=\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}$ etc. . In this case we find $\mathrm{Q}[50]=1.000000001$ with $\mathrm{z}[50]=1.999999993$. So the sqrt(2) tower clearly converges to the finite value of $\mathrm{z}[\infty]=2$. Note however that sqrt(3) and other higher numbers all diverge.

Consider next the general complex number $\mathrm{N}=\mathrm{a}+\mathrm{ib}$ with $\mathrm{z}[0]=1$. Iterations for this generic case read-

$$
\mathrm{z}[1]=\mathrm{a}+\mathrm{ib}, \mathrm{z}[2]=(a+i b)^{(a+i b)}, \text { and } \mathrm{z}[3]=(a+i b)^{(a+i b)^{(a+i b)}}, \text { etc. }
$$

For a given a and b the $z[n]$ sequence will either converge when the $\mathrm{Q}[\mathrm{n}]$ criterion is met or diverge if not met. Let us assume for the moment that the convergence condion is met. Then we have that -

$$
Z=z[\infty]=(a+i b)^{z}
$$

This equation may be rewritten as -

$$
Z \exp \{-\ln (a+i b) Z[\infty]\}=1
$$

which, on multiplying by $-\ln (a+i b)$, leads to-

$$
-\ln (\mathrm{a}+\mathrm{ib}) \mathrm{Zexp}(-\ln (\mathrm{a}+\mathrm{ib}) \mathrm{Z}=-\ln (\mathrm{a}+\mathrm{ib})
$$

It is known that the Lambert Function $\mathrm{W}(\mathrm{x})$ is defined as $\mathrm{W}(\mathrm{x}) \exp \mathrm{W}(\mathrm{x})=\mathrm{x}$. Comparing we obtain the value-

$$
Z=z[\infty]=\frac{W\left(\ln \left(\frac{1}{a+i b}\right)\right.}{\ln \left(\frac{1}{a+i b}\right)}
$$

This value will only be good for conditions where the $\mathrm{Q}[\mathrm{n}]$ criterion is met. So for $\mathrm{N}=\operatorname{sqrt}(2)$ we find $\mathrm{Z}=\mathrm{W}\{\ln (1 / \operatorname{sqrt}(2))\} / \ln (1 / \operatorname{sqrt}(2))=2$. However for $\mathrm{N}=2$ the iteration clealy blows up while the Lambert Function result yields the wrong answer of $\mathrm{Z}=1.771$.

Consider three more power towers. One of these is-

$$
\left(\frac{1}{e}\right)^{\left(\frac{1}{e}\left(\frac{1}{e}\right)^{\frac{1}{e}}\right)}
$$

Its iterations go as $\mathrm{z}[1]=0.36787, \mathrm{z}[2]=0.69220, \mathrm{z}[3]=0.50047$, with $\mathrm{z}[40]=0.567432905$. The $\mathrm{Q}[\mathrm{n}]$ criterion is satisfied so that we may use the the Lambert Function to predict the convergence point. It turns out to be precisely $\mathrm{Z}=\mathrm{W}(1)=0.56714329040978387300$.

The power tower-

$$
\left(\frac{1}{2}\right)^{\left(\frac{1}{2}\right)^{\left(\frac{1}{2}\right)}} \quad \text { converges to } \frac{W(\ln (2))}{\ln (2)}=0.6411857444
$$

Also the power tower-

$$
(1+i)^{(1+i)^{(1+i)^{(1+i)}}} \text { converges to } \mathrm{Z}=\frac{W(\ln (1 /(1+i)))}{\ln (1 /(1+i))}=0.6410264786+\mathrm{i} 0.5236284611
$$

Finally one can get a good idea for the value of $\mathrm{Z}=\mathrm{x}[\infty]$ for those $\mathrm{N}=\mathrm{a}+\mathrm{ib}$ where the iteration indicates convergence. This is achieved by looking at a contour map of the Lambert Function solution applicable typically when the magnitude of $N=\operatorname{sqrt}\left(a^{2}+b^{2}\right)$ does not become too large. Here is the contour map-

CONTOURMAP OF $|Z|$ AS PREDICTED VIA THE LAMBERT FUNCTION

The value of $|\mathrm{Z}|$ for most of the $\mathrm{N}=\mathrm{a}+\mathrm{ib}$ numbers discussed above agree with the graph including the fact that for $\mathrm{N}=$ sqrt(2) we hit a value of $|\mathrm{Z}|=2$. For values of N with larger a and b the present graph fails as it does, for instance, when $N=3,4,5$, etc. In that case the $\mathrm{Q}[\mathrm{n}]$ criterion fails and the power tower has infinite value.

July 27, 2016

