PRIME, COMPOSITE, AND PERFECT NUMBERS

Several month ago while examining the properties of integers, we came up with a new way to classify various integers N via a quotient defined as the ratio of the sum of all divisors of a number, excluding N and one, divided by the number. That is:

$$f(N) = \frac{[\sigma(N)-(N+1)]}{N}$$

where $\sigma(N)$ is the sigma function of the number N. We term this quotient the Number Fraction. As found in books on number theory, one can express the sigma function occurring in this expression as:

$$\sigma(N) = \prod_{k=1}^{n} \frac{p_i^{a_i+1} - 1}{p_i - 1}$$

where $N = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_n^{a_n}$ represents the prime number breakup of the integer N. One need not necessarily require that this product be actually evaluated. The simplest way to determine a number fraction such as $f(12)$, is to simply write $f(12) = \frac{2+3+4+6}{12} = \frac{5}{4} = 1.25$.

Very often one will find that the sigma function is contained within a computer program such as in MAPLE or MATHEMATICA, and so the evaluation of $f(N)$ for smaller numbers N less than about 40 digits is straightforward. For $N=554400$ we find $f(N) = 3.396361833\ldots$. This happens to be the largest $f(N)$ present in the range $1<N<600000$. Also our PC can show that:

$$f(1956478234589421383475091235472873409713) = 0.5238100215\ldots$$

and:

$$f(12345678910111213141516171819202122232425) = 0.2400802015\ldots$$

Several interesting general features of $f(N)$ are observed. First of all, whenever a number N is prime, the Number Fraction must necessarily be zero. This condition was built into our original definition of $f(N)$. Any value of $f(N)$ other than zero indicates a composite number with the degree of compositeness increasing with increasing values of $f(N)$. Semi-primes $N=p_1 \cdot p_2$ have their $f(N)$ near zero and (what I term) large or super composites have $f(N)>1$. The classical definition of a perfect number N is one where the sum of all its divisors except N just equals N. That is $\sigma(N)=2N$. In terms of $f(N)$, perfect numbers are given by:

$$f'(N) = 1 - \frac{1}{N}$$

The first few perfect numbers found are $N=6$, 28, 496, and 8128. The $f(N)$s for these numbers lie slightly below unity. In the literature one also finds references to deficient and abundant numbers. In terms of $f(N)$ these have the definitions:
\[
f(N) = \begin{cases}
> (1 - \frac{1}{N}) = \text{abundant} \\
< (1 - \frac{1}{N}) = \text{deficient}
\end{cases}
\]

So for larger \(N \), a number with \(f(N) > 1 \) is abundant and one where \(f(N) < 1 \) is deficient. \(N=12 \) is an abundant number but \(N=14 \) is deficient. I will refer to those \(N \)s where \(f(N) > 1 \) as large or super-composites. \(N=1260, 9240, 277200, \) and \(3326242920 \) are all examples of super-composites.

It is possible to work out analytical expressions for certain functional forms of \(N \). Take the case of \(N=2^n \) with \(n=1, 2, 3, \) etc. Substituting into the definition of \(f(N) \) we find-

\[
f(2^n) = 1 - \frac{1}{2^{n-1}}
\]

This leads to \(f(N) \)s of intermediate value near one. For Mersenne Primes, defined as \(N=2^p-1 \) for certain primes \(p \), the value of \(f(N) \) is always zero. Another result is-

\[
f(3^n) = \frac{1}{2} \left(1 - \frac{1}{3^{n-1}} \right)
\]

which allows us to generalize to-

\[
f(p^n) = \frac{1}{(p-1)} \left(1 - \frac{1}{p^{n-1}} \right)
\]

for any prime number \(p \). Note that this result will not work when \(p \) is a composite. It also follows that –

\[
f(p^2) = \frac{1}{p} \quad \text{and} \quad f(p^4) = \frac{(p^2 + p + 1)}{p^3}
\]

From this one can further generalize things to obtain the identity-

\[
\sum_{k=1}^{2n-1} \frac{1}{p^k} = f(p^{2n})
\]

We can also use the \(f(p^n) \) result and work backwards to show that the sigma function \(\sigma(p^n) \) equals \((p^{n+1} - 1)/(p-1) \). This provides an alternate proof for the basic product representation of \(\sigma(N) \) given earlier. In addition we have in the limit as \(n \to 1 \) that \(f(p) = 0 \).
The simplest way to find super-composites is to carry out the following MAPLE computer scheme-

\[
\text{with(numtheory): with(plots): listplot([seq(-c+((sigma(x)-x-1)/x),x=a..b)],view=[a..b, 0..d]);}
\]

where \(a<x<b \) gives the range of \(x \) over which we are plotting the number fractions \(f(x) \), \(c \) is a number greater than 1 for super-primes and \(d \) lies between 0 and 3.

For a graph of the first one hundred Number Fractions we use \(a=1, b=100, c=0 \) and \(d=2 \). It produces the listplot-

Notice in this range of \(x \) the largest composite is located at \(x=60 \) and has a number fraction of \(f(60)=1.783333... \) To determine the largest values of \(f(x) \) in a given range, we typically choose a \(c \) greater than about 1. This avoids all the hash appearing for smaller \(f(x) \) yet clearly points out the location of super-composites. We have carried out such calculations and find the following results for the largest \(f(x) \)s in the ranges indicated-

<table>
<thead>
<tr>
<th>Range</th>
<th>Value of (x) at max (f(x))</th>
<th>Number Fraction, (f(x))</th>
</tr>
</thead>
</table>
| 1<x<100 | 60 | 1.78333333

![Graph of Number Fractions](image)
It is seen that the value of the largest super-composite seems to increase very slowly with increasing x but spot checks of $\lim_{n \to \infty} f(N^n)$ indicate that $f(x)$ is probably bounded. Certain regularities are observed including –

$$\lim_{n \to \infty} \left\{ \frac{f(2^n)}{n} \right\} = 1, \quad \text{and} \quad \lim_{n \to \infty} \left\{ \frac{f(6k^n)}{n} \right\} = 2$$

which hold for most positive integers k. A spot check with the twelve digit number $N=113210697600$ yields the Number Fraction $f(N)=4.335823268$. Here $N-1=(1088533)\ (104003)$ is a semi-prime while $N+1=113210697601$ is a prime number. Note that for all the xs considered above, the value of x at a local max $f(x)$ is divisible by 6.

We can view the detailed structure of x versus $f(x)$ by plotting a narrow range about one of these maxima. Take the case of $x=55440$ and its ±10 neighborhood-The curve looks like this-

SUPER-COMPOSITE AT $X=55440$ WHERE $F(X)=3.1869949$. (Note the twin primes at 55439 and 55441)
Note that an approximate mirror reflection occurs about the super-prime at $x=55440$ and also observe the appearance of a double prime at $x=55440 \pm 1$. The spike in $f(x)$ is very reminiscent of a rogue wave occurring in a turbulent sea. The observation that primes (or possibly semi-primes) are likely to occur in the immediate neighborhood of a large or super-prime has already been noted by us in an earlier article including the observation that all primes above $p=3$ can be represented as Q primes defined as $Q=6n \pm 1$. It seems that it is statistically likely that the number in the immediate neighborhood of a large or super-composite is likely to be a prime or semi-prime number, although this will become less likely as N becomes very large since the spacing between primes increases with increasing N.

As an example, take the case of the super-composite $x=665280=3080 \cdot 6^3$ which has $f(x)=3.398266895$. It suggests that either $x+1$ or $x-1$ or both may be prime or semi-prime. Testing things out we find-

$$\text{ifactor}(665281)=577 \cdot 1153 \quad \text{and} \quad \text{ifactor}(665279)=665279$$

so that 665279 is indeed a prime number while 665281 is a semi-prime composed of the primes 577 and 1153. The value of $f(665281)=0.0026004049..$ and so is not quite zero. We also observe that large local peaks in $f(x)$ are generated by $x=3080 \cdot 6^k$, with k a positive integer. This suggests there will be many primes of the form $x=3080 \cdot 6^k \pm 1$. Among those primes are-

$$x:=3080 \cdot 6^{11} - 1 = 1117414932479$$

$$x:=3080 \cdot 6^{43} - 1 = 8893126766801959400651827451296481279$$

$$x:=3080 \cdot 6^{117} + 1 = 3406018569457934597628147355783263837479000839037894646007197472348848463746299874908181626881$$

$$x:=3080 \cdot 6^{152} + 1 = 5855187066761506298864797939364842668487632579032451525970270599107957711517856662244784711592670849738572021498983093370881$$

We can also generate very large primes by finding that number n where-

$$N=6(\text{Random number}+n) \pm 1$$

is prime. Random numbers can be generated by multiplying various irrational numbers together or just generating them directly with a random number generator. As an example, we looked at the number-

$$N=60((2578398250129356753468308953331+n)-1)$$

and found it becomes prime when $n=31$. That is-

$$N=1547038950077614052080998537201719$$
is a 33 digit long prime number. We verify this fact by noting \(f(N) = \frac{\sigma(N) - N - 1}{N} = 0 \) as expected.

April 1, 2013