In several earlier articles we have shown a way to quickly factor large semi-primes $N=pq$, where p and q are its prime components. The method depends on the fact that when both p and q are greater than 3 all Ns, ps, and qs have their mod(6) operation equal to 1 or 5 without exception. Furthermore the form of the p and q can only have the forms-

$$p=6n+1 \quad \text{and} \quad q=6m+1 \quad \text{or} \quad p=6n-1 \quad \text{and} \quad q=6m-1 \quad \text{when} \quad N \mod(6)=1$$

and-

$$p=6n-1 \quad \text{and} \quad q=6m+1 \quad \text{or} \quad p=6n+1 \quad \text{and} \quad q=6m-1 \quad \text{when} \quad N \mod(6)=5$$

Our purpose here is to derive and further simplify the basic formulas for factoring large semi-primes.

CASE 1, $N \mod(6)=1$:

Here we begin with $(6n+1)(6m+1)=N$ which can be written at once as a Diophantine Equation with solutions-

$$x=nm=B+\varepsilon \quad \text{and} \quad y=n+m=\delta-6\varepsilon$$

Here $\delta=k-6B$ is a small integer, $B\gg\varepsilon$, $k=(N-1)/6$, and B is the nearest integer to $k/6$. We can eliminate m from these last two equations to obtain a quadratic in n which solves as-

$$[n, m] = \left(\frac{1}{2}\right)\{(\delta - 6\varepsilon) \pm R\}$$

with-

$$R = \sqrt{(\delta - 6\varepsilon)^2 - 4(B + \varepsilon)}$$

This last radical needs to be solved for an integer value by varying the unknown integer parameter ε which is smaller than B but can still have a large value when N is large. To efficiently find the value of ε we generate an estimate ε_0 which lies close to ε. This is done by noting that $p=\alpha \sqrt{N}$ and $q=\sqrt{N}/\alpha$ when $p<q$. It means that-

$$p + q = (\alpha + 1/\alpha)\sqrt{N} = 6(n + m) + 2 = 6(\delta - 6\varepsilon) + 2$$

But $n+m\gg2$ and $\delta\ll6\varepsilon$, so we get the approximate result-
\[\varepsilon_o = -\left(\alpha + \frac{1}{\alpha}\right) \sqrt{\frac{N}{36}} \]

As will be seen in a graph shown later in this article the value of \(\varepsilon_o \) between 0.1<\(\alpha \)<1 will be about \(\varepsilon_o = \sqrt{N}/18 \). If \(p << \sqrt{N} \), then the term \(1/\alpha \) can make \(\varepsilon_o \) quite a bit larger than this.

The basic operation in the factoring process is now to carry out a search to find a positive integer value for \(R \) by varying integer \(\varepsilon \) about \(\varepsilon_o \). The one line computer program for doing this is-

\[
\text{for } d \text{ from } \varepsilon_o-20 \text{ to } \varepsilon_o+20 \text{ do } \{d,R\}\text{od;}
\]

In this evaluation \(\varepsilon_o \) is set to the nearest integer and the range on \(d \) can be reduced or extended depending on the size of \(\varepsilon_o \). Once \(R \) has been found the rest of the problem is straightforward.

The second possibility for an \(N \mod(6)=1 \) semi-prime is to have \(N=(6n-1)(6m-1) \). Keeping the definitions of \(x=nm \) and \(y=n+m \) this produced the same \(R \), \(k \), \(B \) and \(\delta \) as in the earlier product but the sign of \(y \) changes. So we find-

\[
[n,m] = \left(\frac{1}{2}\right)\{(6\varepsilon - \delta) \pm R\}
\]

This time –

\[\varepsilon_o = +\left(\alpha + \frac{1}{\alpha}\right) \sqrt{\frac{N}{36}} \]

So that the magnitude of \(\varepsilon_o \) stays the same but the sign has changed.

Let us now demonstrate how easy a semi-prime of the form \(N \mod(6)=1 \) can be factored. For this purpose we choose the semi-prime

\[N= 455839 \quad \text{where} \quad N \mod(6)=1 \]

This number is often used to demonstrate the factoring ability of the Lenstra Elliptic Curve Technique. We find \(k=75973 \), \(B=12662 \), \(\delta=1 \) and \(\varepsilon_o=\pm37.508 \) when \((\alpha+1/\alpha)=2 \). The \(\pm \) in \(\varepsilon_o \) is required since we don’t know yet which of the two possible forms \(p \) and \(q \) take. Evaluating \(R \) for \(\varepsilon \)s around -38 and +38 yields the integer result of \(R=27 \) at \(\varepsilon=38 \). So the guess for \(\varepsilon \) was right on. The positive sign on \(\varepsilon \) tells us that \(p=6n-1 \) and \(q=6m-1 \). Plugging into the \([n,m]\) solution yields-

\[[n,m]=(1/2)\{6(38)-1\pm27\}=[100,127] \]
This means-

\[455839 = [6(100)-1]x[6(127)-1] = 599 \times 761 \]

The ease with which this factoring was achieved is far superior to application of the Lenstra Method for the same number.

CASE2, N \text{ mod}(6)=5:

For case two we start with \(N=(6n-1)(6m+1) \) which can be recast into a Diophantine Equation which has the integer solutions-

\[x = nm = B + \varepsilon \quad \text{and} \quad y = n-m = \delta - 6\varepsilon \]

Here the definitions of the constants have changed a little now reading \(k=(N+1)/6 \) with \(y=n-m \), \(B \) being the nearest integer to \(k/6 \) and \(\delta=k-6B \). Eliminating \(m \) produces the quadratic equation-

\[n^2 - n(\delta - 6\varepsilon) - (B + \varepsilon) = 0 \]

This solves as-

\[[n,m] = \left(\frac{1}{2} \right) \{ (\delta - 6\varepsilon) \pm \sqrt{(\delta - 6\varepsilon)^2 + 4(B + \varepsilon)} \} \]

As a result we have a new \(R \) given as-

\[R = \sqrt{(\delta - 6\varepsilon)^2 + 4(B + \varepsilon)} \]

This differs from the earlier \(R \) in having the sign before 4 be positive. Everything else stays the same using the new definitions. The estimate for \(\varepsilon_0 \) can be established as follows-

\[p - q = (\alpha - \frac{1}{\alpha})\sqrt{N} = 6y - 2 = 6\delta - 36\varepsilon - 2 \]

Noting that \(36\varepsilon >> 2(1+3\delta) \), we can write the approximation for \(\varepsilon \) as-

\[\varepsilon_0 = -(\alpha - \frac{1}{\alpha}) \frac{\sqrt{N}}{36} \]
Note the sign change from the earlier version of ε_0. The integer value of R can now be found by searching for integer R by searching about ε_0. Once this is done the rest of the problem is straightforward leading to the values of the factors p and q.

The remaining possibility for $N \mod(6)=5$ is to have $p=6n+1$ and $q=6m-1$. This means essentially switching n and m so that $y=m-n$. It produces the solutions-

$$[-m,n] = \left(\frac{1}{2}\right)\{(\delta - 6\varepsilon) \pm R\}$$

with R retaining its value from the $p=6n-1$ and $q=6m+1$ case. The estimate ε_0 becomes-

$$\varepsilon_0 = +\left(\alpha - \frac{1}{\alpha}\right) \frac{\sqrt{N}}{36}$$

and so equals the negative of the ε_0 obtained for the $p=6n-1$ and $q=6m+1$ case.

We can plot the quantity $36 \varepsilon_0 / \sqrt{N}$ versus the parameter α to get the following graph for all four p,q combinations. It looks as follows for $0.1<\alpha<1$-

ESTIMATED VALUE OF EPSILON

FOR $N \mod(6)=1$ (red) AND $N \mod(6)=5$ (blue)

It is noted for the $N \mod(6)=5$ case that the absolute value of ε_0 increases approximately linearly from zero at $\alpha=0$ to 2 at $\alpha=0.4$. After that it increases more rapidly. It is clear that a good guess for α produces a good estimate for ε and thus minimizes the number of
trails needed in the search for integer R. Typically one wants to start with a value of \(\alpha = 0.7 \) and search about \(\varepsilon_0 \) in a band of about 0.1 \(\varepsilon_0 \) width. If no integer values for R are found then go on to a lower value of \(\alpha = 0.5 \) and repeat the search. Eventually a value of \(\alpha \) will be found where an integer solution to R results.

We are now ready to factor a semi-prime where \(N \mod(6)=5 \). One such number is-

\[N=1651797 \quad \text{for which} \quad \sqrt{N}=4063.963213 \ldots \]

Here we find \(k=(N+1)/6=2752633, \ B=458772, \ \delta=k-6B=1, \ \text{and} \ \varepsilon_0 = \pm 82 \) if we take \(\alpha = 0.7 \). Carrying out a search about +82 yields the integer solution \(R = 1433 \) at \(\varepsilon = 78 \). This is only four divisions away from \(\varepsilon_0 = 82 \) telling us that the guess \(\alpha = 0.7 \) was a good guess and that \(p \) and \(q \) have the forms \(p=6n+1 \) and \(q=6m-1 \). We now find-

\[[-m,n]=(1/2)\{ -467 \pm 1433 \} = [-950,488] \]

This means we have the factors-

\[1651797=\{ 6(483)-1 \}\{ 6(950)+1 \}=2897x5701 \]

CONCLUDING REMARKS:

The present factorization method for \(N \) works quickly and accurately for semi-primes up to about twelve digit length using my home PC and the math program MAPLE. However, as the digits in \(N \) grow further it becomes more difficult to know which \(\alpha \) to guess in order to have \(\varepsilon_0 \) lie close to the actual value \(\varepsilon \) so that the number of evaluations for finding integer R can be minimized. Also it becomes increasingly difficult to apply the present method when \(\alpha \) lies in the range \(0<\alpha<0.1 \) since, as the above graph shows, the values of \(36 \varepsilon_0/\sqrt{N} \) then become quite large. What is noted is that for a given \(\alpha \) the value of \(\varepsilon \) which leads to an integer solution for R increases as the square root of N. Thus a hundred digit long semi-prime \(N \) would be expected to require an integer value of \(\varepsilon \) in the fifty digit range to make R an integer. For an \(N \mod(6)=1 \) semi-prime a rough guess for \(\varepsilon \) is an integer value near \(\sqrt{N}/18 \).

U.H.Kurzweg

December 11, 2016