INTRODUCTION:

There are two types of semi-primes $N=pq$ whose components are both greater than three. These constitute what we have called the Q Primes in earlier notes. They are characterized by either:

$$N \mod(6)=1 \quad \text{or} \quad N \mod(6)=5$$

Examples of the first and second type are $N=50297791$ and $N=33414839$, respectively. We have already discussed the $N \mod(6) =1$ case in detail in a preceding note. This time we concentrate on factoring semi-primes of the form $N \mod(6)=5$ which means N may be expanded as:

$$N=(6n-1)(6m+1)$$

As before we will try to obtain a universal curve of N versus an adjustment parameter k. Once a certain radical R has been evaluated the values of the prime components p and q follow.

DEVELOPING FORMULAS FOR n AND m WHEN $N \mod(6)=5$:

To find $n=(p+1)/6$ and $m=(q-1)/6$ we first expand things as:

$$6 nm-(m-n)=(N+1)/6=A$$

On setting $x=nm$ and $y=m-n$, we obtain the linear Diophantine equation:

$$6x-y=A$$

For large N we have that $6x \approx A$ since generally $nm>>(m-n)$. Also, since x and y are integers we have to adjust A by $A-A \mod(6)$. Calling $A \mod(6)=H$, we get the solution:

$$x=B+k \quad \text{and} \quad y=(-H+6k)$$

where $B=(A-H)/6$ and k is an adjustment parameter small compared to A. We can now solve for either n or m by eliminating one or the other. First letting $m=(B+k)/n$, we get:

$$n^2 -(H - 6k)n - (B+k) = 0$$

Solving for n we get:
Also one can solve for m by eliminating n to get-

\[m = \left(\frac{1}{2} \right) \left\{ (-H + 6k) + \sqrt{(-H + 6k)^2 + 4(B + k)} \right\} \]

Subtracting n from m we find as expected that-

\[y = m - n = -H + 6k \]

Also-

\[x = nm = B + k \]

We call the radical appearing in the n and m solutions R. It is the finding of k which makes the radical an integer which is the most difficult part of the factoring procedure.

EVALUATION OF R:

The key to factoring N when \(N \mod 6 = 1 \) is to find the value of k which makes the above radical R an integer. Once this has been accomplished the rest of the factorization leading to the values of p and q becomes straightforward.

For smaller N this process of finding an integer value for R is quite easy using the program-

\[
\text{for } k \text{ from } 1 \text{ to } b \text{ do } \{k, \text{evalf(sqrt((-H+6k)^2+4*(B+k)))}\}\text{ od;}
\]

So, for example, if \(N = 731 \) we have \(H = 2 \) and \(B = 20 \). So the radical becomes \(R = \sqrt{36k^2 - 20k + 84} \). Its solution is \(R = 10 \) at \(k = 1 \). Hence we have-

\[n = (2-6+10)/2 = 3 \quad \text{and} \quad m = (-2+6+10)/2 = 7 \]

, from which follow-

\[p = 6(3) - 1 = 17 \quad \text{and} \quad q = 6(7) + 1 = 43 \]

For larger \(N \) a brute force approach of starting the search at \(k = 1 \) becomes impractical especially when dealing with semi-primes of fifty to a hundred digit length such as are encountered in public key cryptography. In these cases one needs to find a better starting point for k. After years of thought devoted to this task, it dawned on me about a year ago that one should be able to come up with a good estimate for a good starting value for k by looking at the reverse problem of generating a table and graph of precise values for N and
k for specified values of \(n\) and \(m\). This approach worked well for our earlier \(N \mod(6)=1\) factorization and is expected to also work here.

We begin with generating a graph of the points \([\log(N), \log(|k|)]\) using the simple MAPLE program:

\[
\begin{align*}
n := 3; & \quad m := 7; \quad \text{isprime}(6*n-1); \quad \text{isprime}(6*m-1); \quad p := 6*n-1; \quad q := 6*m+1; \quad N := p*q; \\
evalf(\log10(N)); & \\
A := (N+1)/6; & \quad H := A \mod(6); \quad B := (A-H)/6; \\
k := (1/36)*(N-1-6*H-(p-1)*(q-1)); & \quad \text{evalf}(\log10(k));
\end{align*}
\]

by varying \(n\) and \(m\). It produces the following graph-

As in our earlier study of semi-primes where \(N \mod(6)=1\), we find here a nearly straight line for the exact points shown as red circles. We can approximate the trend by the formula-

\[
\log(N) = 3.7 + 2 \log(|k|)
\]

This is equivalent to the universal Universal Curve-

\[
|k| = \sqrt{N}/[70.7745]
\]
The absolute value sign is kept on k since $k > 0$ when $m > n$ and $k < 0$ when $n > m$. As in the earlier case on $N \mod(6) = 1$, we find again that $|k|$ goes as the square root of N. But in general the present $N \mod(6) = 5$ case produces a lower $|k|$ value for a given N.

To find the integer value of R we now search the neighborhoods of $+k$ and $-k$. After enough trials the desired integer value for R will be found. Once the integer values of R and the corresponding k have been determined, the rest of the problem becomes straightforward via use of the above $[n,m]$ equations.

FACTORING OF SEVERAL DIFFERENT SEMI-PRIMES:

We begin our specific evaluations with the eight digit semi-prime-

$$N = 207143 \quad \text{where} \quad N \mod(6) = 5$$

In this case $A = 34524$, $H = 0$, and $B = 5754$ and our search start will be $|k| = \frac{\sqrt{N}}{70.7745} = 6.43$. So we need to search about $k = 6$ and $k = -6$. The result of three evaluations about $k = 6$ using the program-

```plaintext
for k from 5 to 7 do (k, evalf(sqrt((6*k)^2+4*(5754+k)))}od;
```

produces-

{5, 154.7126369}
{6, 156.} ←answer [k,R]
{7, 157.5055555}

Hence we have the solution $R = 156$ when $k = 6$. The rest of the problem is straightforward yielding-

$$n = \frac{-36 + 156}{2} = 60 \quad \text{and} \quad m = \frac{36 + 156}{2} = 96$$

Hence- $p = 6(60) - 1 = 359$ and $q = 6(96) + 1 = 577$.

Note here that the actual required value of k coincides exactly with that suggested by the Universal Curve when evaluated at the nearest integer. This will generally not be the case as N gets larger. Still the present approach will still be much faster than any brute force search starting with $k = 1$.

As the next example we factor the semi-prime-

$$N = 64636973 \quad \text{where} \quad N \mod(6) = 5$$

The nearest integer to $|k| = \frac{\sqrt{N}}{70.7745} = 113.58$ is $k = 114$ or -114. Carrying out a search we obtain the integer value $R = 2771$ at $k = -117$. So just 3 integers away from the initial guess of -114. Solving for n we get-
\[n = \frac{1}{2} \{3 + 6(117) + 2771\} = 1738 \]

Likewise for \(m \) we get-

\[m = \frac{1}{2} \{-3 - 6(117) + 2771\} = 1033 \]

These produce the results-

\[p = 6(1738) - 1 = 10427 \quad \text{and} \quad q = 6(1033) + 1 = 6199 \]

Note that for this example we had a negative \(k \). This follows from the fact that here \(n > m \). It is of course something we did not know until after \(R \) was solved.

For our last example consider the ten digit long number-

\[N = 9540703223 \quad \text{with} \quad N \mod(6) = 5 \]

Here \(A = 1590117204, H = 0, \) and \(B = 265019534 \). Our Universal Curve predicts we should expand around \(|k| = \sqrt{N}/707745 = 1380\). Doing so we find the correct \(k = 1490 \) which yields the integer value \(R = 33764 \). So we find-

\[n = \frac{1}{2} \{-6(1470) + 33764\} = 12412 \]

This means \(p = 6(12412) - 1 = 74471 \) so that \(q = 9540703223/74471 = 128113 \)

It took us a total of \(1490 - 1380 = 110 \) trials to get our answer. That is, is took some 13.5 times less effort than the use of a brute force search starting with \(k = 1 \).

CONCLUDING REMARKS:

From the present article and the preceding article on this web page we have succeeded in factoring all semi-primes of the \(Q \) type. That is for all semi-primes \(N = pq \) which are odd and have neither \(p \) or \(q \) be equal to three. The success of the method can be attributed to the use of two Universal Curves which allow a good starting value for \(k \) needed in a search which makes a certain radical \(R \) an integer. These Universal Curves are-

\[|k| = \sqrt{N/10^{2.5}} \quad \text{for semi-primes where} \quad N \mod(6) = 1 \]

and-

\[|k| = \sqrt{N}/70.7745 \quad \text{for semi-primes where} \quad N \mod(6) = 5 \]
Semi-primes up to 14 digits long can be readily evaluated by the present method on our home PC in just a few seconds. With the aide of supercomputers the rapid factoring of semi-primes of length 50 to 100 digits becomes a distinct possibility.

U.H.Kurzweg
Feb.27. 2018
Gainesville, Florida