## DERIVATION AND PROPERTIES OF THE WITCH OF AGNESI CURVE

This is a curve studied in detail by the polymath and mathematician Marie Agnesi (17181799) of Milan. In its simplest form the curve reads-

$$
y=\frac{1}{\left(1+x^{2}\right)}
$$

It is an even function of $x$ having value of $y[0]=1$ and $y( \pm \infty)=0$. Its integral (and hence the area under this curve) equals-

$$
\int_{x=-\infty}^{+\infty} \frac{d x}{\left(1+x^{2}\right)}=2\{\arctan (\infty)-\arctan (0)\}=\pi
$$

The reason for the curve to be known as The Witch of Agnesi comes from a mistranslation of the Italian-Latin word versoria into English. I remember when I first ran into this curve in our analytic geometry class as a college freshman over fifty years ago, I had originally thought the name arose from the witches hat-like appearance of the curve.

We can derive the analytic version of the curve via the following graph-
DERIVATION OF THE WITCH OF
AGNESI CURVE

$$
y=8 a^{3} /\left(4 a^{2}+x^{2}\right)
$$



One starts with a circle of radius $\mathrm{r}=\mathrm{a}$ and two horizontal parallel lines tangent to the top and bottom of the circle. Straight lines connect the points O, A, B, C, D and P as shown. The curve is defined such that point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ market as a red dot always lies on it. From the geometry one has at once that $x=2 a / \tan (t)$, where the angle $t$ is present in each of the three right triangles
shown. To get y we see that $\mathrm{y}=2 \mathrm{a}-\mathrm{AB} \cos (\mathrm{t})=2 \mathrm{a}\left[1-\cos (\mathrm{t})^{2}\right]=2 \operatorname{asin}(\mathrm{t})^{2}$. We thus have the curve given in parametric form as-

$$
x=2 a \cot (t) \quad y=2 a \sin (t)^{2}
$$

On squaring the x term and then eliminating $\sin (\mathrm{t})^{2}$ one arrives at the Cartesian form-

$$
y=\frac{(2 a)^{3}}{\left[(2 a)^{2}+x^{2}\right]}
$$

A plot of this last equation follows-


The first and second derivative of this function equals-

$$
y^{\prime}(x)=\frac{-16 a^{3} x}{\left(4 a^{2}+x^{2}\right.} \quad \text { and } \quad y^{\prime \prime}(x)=\frac{a^{3}\left(3 x^{2}-4 a^{2}\right)}{\left(4 a^{2}+x^{2}\right)^{3}}
$$

Thus the Witch of Agnesi has zero slope ar $\mathrm{x}=0$ and $\mathrm{x}= \pm \infty$ and has inflection points at $x= \pm 2 a / s q r t(3)$. The area under the entire curve equals $4 \pi a^{2}$. That is, the area equals four times that of the generating circle.

The radius of curvature for the Agnesi curve is given by-
$\rho(x)=\frac{\left[1+y^{\prime}(x)^{2}\right]^{3 / 2}}{y^{\prime \prime}\{x)}=\frac{\left(4 a^{2}+x^{2}\right)}{16 a^{3}\left(3 x^{2}-4 a^{2}\right)} \sqrt{256 a^{8}+512 a^{2} x^{2}+96 a^{4} x^{4}+16 a^{2} x^{6}+x^{8}}$ $=$

For $\mathrm{a}=1 / 2$ it yields the following pattern-

## RADIUS OF CURVATURE FOR THE WITCH OF AGNESI CURVE

$a=1 / 2$


Note the infinite values at the inflection points

Notice the infinite radii at $\mathrm{x}= \pm 0.57735$ corresponding to the two inflection points.
The length of the Agnesi curve extending from point A to P is given as-

$$
S(x)=\int_{x=0}^{x} \sqrt{1+y^{\prime}(x)^{2}} d x=\int_{t=0}^{t} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

This yields the rather complicated integral-

$$
S(t)=2 a \int_{t=0}^{t} \sqrt{\left[1+\cot (t)^{2}\right]^{2}+[2 \sin (t) \cos (t)]^{2}} d t
$$

which cannot be integrated in closed form but can be evaluated numerically.
There are many variations of the Agnesi curve. For example one could consider-

$$
\mathrm{F}(\mathrm{x})=\mathrm{f}(\mathrm{x}) /\left(1+\mathrm{x}^{2}\right) \quad \text { with } \quad \mathrm{f}(\mathrm{x})<\left(1+\mathrm{x}^{2}\right)
$$

So if $f(x)=\cos (x)$ we get the area under $F$ to be $\pi / e=1.155727$. For $f(x)=\exp \left(-x^{2}\right)$ we get this area to be $\pi e[1-\operatorname{erf}(1)]$. A plot of $F(x)=\cos (x) /\left(1+x^{2}\right)$ follows-

```
PLOT OF THE FUNCTION F(X)=COS(X)/[1+X }\mp@subsup{}{}{2}
```



Area under curve $=\pi / \mathrm{e}$

Another modification is the Legendre polynomial form-

$$
F(n, x)=\frac{P(n, x)}{1+x^{2}} \quad \text { defined } \quad \text { in } \quad-1<x<1
$$

When this function is integrated over the indicated range for a given n it yields very good approximations for $\pi$, especially when $n$ gets large. At $n=40$ we find-
$\pi \approx[23099314802942710841421068087853056] /[7352740265848245332158839252232725]$ $=3.141592653589793238462643383278 \ldots$.
, a result good to 30 decimal places.
U.H.Kurzweg July 26, 2017

