N! AND THE GAMMA FUNCTION

Consider the product of the first n positive integers-

$$
1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \cdot(\mathrm{n}-1) \cdot \mathrm{n}=\mathrm{n}!
$$

One calls this product the n factorial and has that product of the first five integers equals $5!=120$. Directly related to the discrete $n!$ function one has the continuous gamma function $\Gamma(\mathrm{n})$. Both are defined by the same integral -

$$
\Gamma(n+1)=n!=\int_{t=0}^{\infty} t^{n} \exp (-t) d t
$$

One integration by parts yields-

$$
\int_{t=0}^{\infty} t^{n} \exp (-t) d t=n \int_{t=0}^{\infty} t^{n-1} \exp (-t) d t
$$

from which follow the identities-

$$
(\mathrm{n}+1)!=\mathrm{n}!(\mathrm{n}+1) \quad \text { and } \quad \Gamma(\mathrm{n}+1)=\mathrm{n} \Gamma(\mathrm{n})
$$

We also have that $0!=1!=1$ and $\Gamma(0)=\infty, \Gamma(1 / 2)=\operatorname{sqrt}(\pi)$ and $\Gamma(1)=1$. A plot of $n!$ and $\Gamma(\mathrm{n}+1)$ follow-

N! AND THE GAMMA(N+1) FUNCTION

The blue dots are n ! values while the red curve represents the continuous $\Gamma(\mathrm{n}+1)$ function. The curve reaches a minimum value of $\Gamma(\mathrm{n})=0.88560$ at $\mathrm{n}=1.462$. One typically finds the values for $\Gamma(\mathrm{n})$ are tabulated only in the range $1<\mathrm{n}<2$, since the rest can be quickly generated via the above recurrence formula.
Although there is no true factorial for negative integers, one can extend the $\Gamma(\mathrm{n})$ function to negative n and obtain non infinite values when n is a negative non-integer.

We can also express the derivative of the gamma function as the integral-

$$
\frac{d \Gamma(n)}{d n}=\int_{t=0}^{\infty} \frac{\exp (-t)}{t}\left(\frac{d t^{n}}{d n}\right) d t=\int_{t=0}^{\infty} t^{n-1} \ln (t) \exp (-t) d t
$$

This derivative goes toward $-\infty$ as $\mathrm{n}->0$, has zero value near $\mathrm{n}=1.462$ and takes on progressively larger positive values as n heads toward plus infinity. Notice that this last integral is just the Laplace transform of $t^{(n-1)} \ln (t)$ after s is set equal to unity. A function related to $\Gamma(\mathrm{x})$ is the digamma function-

$$
\psi(x)=\frac{d \Gamma(x) / d x}{\Gamma(x)}=\frac{d[\ln \Gamma(x)]}{d x}
$$

It has the value $\psi(1)=-\gamma$ where $\gamma=0.5772156649$.. is the Euler constant.
One can also sum the reciprocals of various combinations of $n!$. We have, among many other examples, that-

$$
\begin{aligned}
& \exp (1)=\sum_{n=0}^{\infty} \frac{1}{n!}=2.718281828459045 . . \\
& I_{0}(2)=\sum_{n=0}^{\infty} \frac{1}{(n!)^{2}}=2.27958530233607 . . \\
& \cosh (1)=\sum_{n=0}^{\infty} \frac{1}{(2 n)!}=1.54308063481524 . . \\
& \sinh (1)=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)}=1.17520119364380 . .
\end{aligned}
$$

Notice also that-

$$
(2 n)!=[1 \cdot 3 \cdot 5 \cdot(2 n-1)][2 \cdot 4 \cdot 6 \cdot 2 n]=[1 \cdot 3 \cdot 5 \cdot(2 n-1)] 2^{n} n!
$$

Thus we have that-

$$
1 \cdot 3 \cdot 5 \cdot \cdot(2 n-1)=(2 n)!/\left(2^{n} n!\right)
$$

From this it follows that the product of the first five odd numbers equals $10!/(32 * 5!)=945$. This last form also allows one to write certain infinite series in compact form. For example, we have that-

$$
\frac{1}{\sqrt{1-x^{2}}}=1+\frac{1}{2 \cdot 1!} x^{2}+\frac{(1 \cdot 3)}{2^{2} \cdot 2!} x^{4}+\frac{(1 \cdot 3 \cdot 5)}{2^{3} \cdot 3!} x^{6}+\ldots=\sum_{m=0}^{\infty} \frac{(2 m)!}{2^{2 m}(m!)^{2}} x^{2 m}+
$$

As we learned in our earlier discussions on Legendre polynomials $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$, these can be generated by the generating function -

$$
\frac{1}{\sqrt{1+t^{2}-2 x t}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n}
$$

So on setting $\varepsilon=2 \mathrm{xt}^{2}{ }^{2}$ we can write-

$$
\begin{aligned}
\sum_{n=0}^{\infty} P_{n}(x) t^{n} & =\sum_{m=0}^{\infty} \frac{(2 m)!}{2^{2 m}(m!)^{2}}[t(2 x-t)]^{m}=1+\frac{2!}{2^{2}(1!)^{2}}[t(2 x-t)]+\frac{4!}{2^{4}(2!)^{2}}[t(2 x-t)]^{2}+\ldots \\
& =1+x t+\left[\left(3 x^{2}-1\right) / 2\right] t^{2}+O\left(t^{3}\right)
\end{aligned}
$$

which produces the Legendre polynomials.
One can also use the gamma function $\Gamma(\mathrm{n})$ to evaluate $1 \cdot 3 \cdot 5 \cdot \cdot 2 \mathrm{n}-1$. We have $\Gamma(1 / 2)=\operatorname{sqrt}(\pi)$ so that $\Gamma(3 / 2)=\operatorname{sqrt}(\pi) / 2, \Gamma(5 / 2)=(1 \cdot 3) \operatorname{sqrt}(\pi) / 2^{2}$ and $\Gamma(7 / 2)=(1 \cdot 3 \cdot 5) \mathrm{sqrt}(\pi) / 2^{3}$. From this it follows that-

$$
[1 \cdot 3 \cdot 5 \cdot \quad \cdot(2 \mathrm{n}-1)]=2^{\mathrm{n}} \Gamma(\mathrm{n}+1 / 2) / \operatorname{sqrt}(\pi)
$$

Combining this result with the form of (2n)! given earlier, one obtains the Legendre Duplication Formula-

$$
(2 n)!=\frac{2^{2 n} n!}{\sqrt{\pi}} \Gamma\left(n+\frac{1}{2}\right)
$$

Trying this out for $\mathrm{n}=5$, we find-

$$
10!=\left(2^{10} 5!\right) \Gamma(11 / 2) / \operatorname{sqrt}(\pi)=3628800
$$

Another combination of factorials which often arises is the famous binomial coefficient-

$$
\mathrm{C}_{\mathrm{nm}}=\mathrm{n}!/[(\mathrm{m}!(\mathrm{n}-\mathrm{m})!]
$$

It is produced by the following binomial expansion-

$$
(a+b)^{n}=a^{n}+n a^{n-1} b / 1!+n(n-1) a^{n-2} b^{2} / 2!+=\sum_{m=0}^{n} C_{n m} a^{m} b^{n-m}
$$

Note that the C_{nm} for a fixed n just represents the numbers in the nth row of a Pascal triangle. Thus the $4^{\text {th }}$ row has the coefficients $\mathrm{C}_{4 \mathrm{~m}}=4!/[(\mathrm{m}!(4-\mathrm{m})!]$ which are 1-4-6-4-1.

Another extension of the factorial is the product of squares which read-

$$
F(n)=1 \cdot 4 \cdot 9 \cdot 16 \cdot \quad \cdot n^{2}
$$

This is easy to evaluate by noting $\mathrm{F}(\mathrm{n})$ is just the product of n ! with itself. That is-

$$
\mathrm{F}(\mathrm{n})=(1 \cdot 2 \cdot 3 \cdot \cdot \mathrm{n})(1 \cdot 2 \cdot 3 \cdot \mathrm{n})=(\mathrm{n}!)^{2}
$$

It also follows that the product of the first n pth powers of the integers equals $(\mathrm{n}!)^{\mathrm{p}}$. Thus -

$$
1 \cdot 8 \cdot 27 \cdot 64 \cdot 125=(5!)^{3}=1728000
$$

Next we examine the value of $\Gamma(\mathrm{n}+1 / 2)$. Using the Legendre Duplication Formula and the form for (2n)! given earlier, we have-

$$
\Gamma\left(n+\frac{1}{2}\right)=\frac{\sqrt{\pi}(2 n)!}{2^{2 n} n!}
$$

This allows one to find the half-integer gamma function. It says -

$$
\Gamma(31 / 2)=30!\operatorname{sqrt}(\pi) /\left(2^{30} 15!\right)=(6190283353629375 / 32768) \operatorname{sqrt}(\pi)
$$

As expected this value lies between 14 ! And 15 !.
It is also possible to develop gamma function identities not found in existing mathematical handbooks. One of these is-

$$
\mathrm{G}(\mathrm{n})=\Gamma(\mathrm{n}+1 / 2) \cdot \Gamma(\mathrm{n}-1 / 2)
$$

We develop the general value for $G(n)$ by starting with $n=1$ where $G(1)=\pi / 2$. Next at $n=2$ we have $\mathrm{G}(2)=+3 \pi / 8$ and at $\mathrm{n}=3$ we find $\mathrm{G}(3)=45 \pi / 32$. This suggests that -

$$
G(n)=\frac{(2 n-1) \pi}{2^{2 n-1}}\left\{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot . . \cdot(2 n-3)^{2}\right\}=\frac{(2 n-1)}{2}\left[\Gamma\left(n-\frac{1}{2}\right)\right]^{2}
$$

This identity checks for all values of n tried for n of one or greater.

Another variation is the gamma product function-

$$
P(x, y)=\Gamma(x+y) \cdot \Gamma(x-y)
$$

which reduces to $(x+y-1)!\cdot(x-y-1)$! when x and y are integers. A contour plot of this function for $\mathrm{x}>0$ and $-4<\mathrm{y}<4$ looks like this-

The contours form closed curves and $\mathrm{P}(\mathrm{x}, \mathrm{y})$ goes to infinity when $\mathrm{y}= \pm(\mathrm{x}+\mathrm{n})$ since gamma for any negative integer in unbounded. Alternate strip regions between the unit slope curves also show finite valued contours. The minimum contour value occurs near $\mathrm{x}=1.46$ and $\mathrm{y}=0$ and has the value $\mathrm{P}=0.7844$.

Finally we look at the gamma function $\Gamma(\mathrm{z})$ when $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ is a complex number. Here the best approach is to use the integral definition-

$$
\Gamma(x+i y)=\int_{t=0}^{\infty} t^{x+i y-1} \exp (-t) d t=\int_{t=0}^{\infty} t^{x-1} \exp (-t)[\cos (y \ln t)+i \sin (y \ln t)] d t
$$

From the integral we see that $\Gamma(x+i y)$ has a real and imaginary part represented by two different integrals. We find-

$$
\Gamma(1+\mathrm{i})=0.4980156681-\mathrm{i} 0.1549498283
$$

so that $\Gamma(1+\mathrm{i}) \cdot \Gamma(1-\mathrm{i})=|\Gamma(1+\mathrm{i})|^{2}=0.2720290550$.. . Also we have that-

$$
\left.\int_{t=0}^{\infty} \cos [\ln (t)] \exp (-t)\right) d t=0.4980156681 .
$$

We can also plot $\Gamma(\mathrm{x}+\mathrm{iy})=\mathrm{u}+\mathrm{iv}$ in the $\mathrm{u}-\mathrm{v}$ plane. This can produce some interesting figures such as the following-

In the first we plot $\Gamma(\mathrm{z})$ for $\mathrm{z}=\mathrm{x}+\mathrm{i}$ to get a run-away spiral pattern. For the second figure we have set $z=1+i y$. It produces a closed double loop. Many other plots are possible by just setting x or y to different constant values.

March 2013

