
                    N! AND THE GAMMA FUNCTION 
 
Consider the product of the first n positive integers- 
 
                                      1·2·3·4·5·6·  ·(n-1)·n=n! 
 
One calls this product the n factorial and has that product of the first five integers equals 
5!=120.  Directly related to the discrete n! function one has the continuous gamma 
function Γ(n). Both are defined by the same integral – 
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One integration by parts yields- 
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from which follow the identities- 
 
                    (n+1)!=n!(n+1)       and     Γ(n+1)=nΓ(n) 
 
We also have that 0!=1!=1 and Γ(0)=∞, Γ(1/2)=sqrt(π) and Γ(1)=1. A plot of n! and 
Γ(n+1) follow- 
 

               



The blue dots are n! values while the red curve represents the continuous Γ(n+1) 
function. The curve reaches a minimum value of Γ(n)= 0.88560 at n=1.462.  One 
typically finds the values for Γ(n) are tabulated only in the range 1<n<2, since the rest 
can be quickly generated via the above recurrence formula. 
Although there is no true factorial for negative integers, one can extend the Γ(n) function 
to negative n and obtain non infinite values when n is a negative non-integer. 
 
We can also express the derivative of the gamma function as the integral- 
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This derivative goes toward -∞ as n->0, has zero value near n=1.462 and takes on 
progressively larger positive values as n heads toward plus infinity. Notice that this last 
integral is just the Laplace transform of  t(n-1)ln(t) after s is set equal to unity. A function 
related to Γ(x) is the digamma function- 
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It has the value ψ(1)=-γ where γ=0.5772156649.. is the Euler constant. 
 
One can also sum the reciprocals of various combinations of n!. We have, among many 
other examples, that- 
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Notice also that- 
 
             (2n)!=[1·3·5·  (2n-1)][2·4·6·  2n]= [1·3·5·  (2n-1)]2nn! 
 
Thus we have that- 
 
                   1·3·5·  ·(2n-1)=(2n)!/(2nn!) 
 



From this it follows that the product of the first five odd numbers equals 
10!/(32*5!)=945. This last form also allows one to write certain infinite series in compact 
form. For example, we have that- 
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As we learned in our earlier discussions on Legendre polynomials Pn(x), these can be 
generated by the generating function - 
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So on setting ε=2xt-t2 we can write- 
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which produces the Legendre polynomials. 
 
One can also use the gamma function Γ(n) to evaluate 1·3·5·  ·2n-1. We have 
Γ(1/2)=sqrt(π) so that Γ(3/2)=sqrt(π)/2 , Γ(5/2)=(1·3)sqrt(π)/22 and 
Γ(7/2)=(1·3·5)sqrt(π)/23. From this it follows that- 
 
                      [1·3·5·   ·(2n-1)]= 2n Γ(n+1/2)/sqrt(π) 
 
Combining this result with the form of (2n)! given earlier, one obtains the Legendre 
Duplication Formula- 
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Trying this out for n=5, we find- 
 
                   10!=(2105!)Γ(11/2)/sqrt(π)=3628800 
 
Another combination of factorials which often arises is the famous binomial coefficient-  
 
                        Cnm=n!/[(m!(n-m)!] 
 
It is produced by the following binomial expansion- 
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Note that the Cnm for a fixed n just represents the numbers in the nth row of a Pascal 
triangle. Thus the 4th row has the coefficients C4m=4!/[(m!(4-m)!] which are 1-4-6-4-1. 
 
Another extension of the factorial is the product of squares which read- 
 
                                    F(n)= 1·4·9·16·    ·n2 
 
This is easy to evaluate by noting F(n) is just the product of n! with itself. That is- 
 
                       F(n)=(1·2·3·   ·n)(1·2·3·  ·n)=(n!)2 
 
It also follows that the product of the first n pth powers of the integers equals (n!)p. 
Thus – 
                         1·8·27·64·125=(5!)3=1728000 
 
 
Next we examine the value of Γ(n+1/2). Using the Legendre Duplication Formula and the 
form for (2n)! given earlier, we have- 
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This allows one to find the half-integer gamma function. It says – 
 
        Γ(31/2)=30!sqrt(π)/(23015!)= (6190283353629375/32768)sqrt(π) 
 
As expected this value lies between 14! And 15!. 
 
It is also possible to develop gamma function identities not found in existing 
mathematical handbooks. One of these is- 
 
                                G(n)=Γ(n+1/2)·Γ(n-1/2) 
 
We develop the general value for G(n) by starting with n=1 where G(1)=π/2. Next at n=2 
we have G(2)=+3π/8 and at n=3 we find G(3)=45π/32. This suggests that – 
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This identity checks for all values of n tried for n of one or greater.  
 



Another variation is the gamma product function- 
 
                            P(x,y)=Γ(x+y)·Γ(x-y) 
 
 which reduces to (x+y-1)!·(x-y-1)! when x and y are integers. A contour plot of this 
function for x>0 and -4<y<4 looks like this- 
 

                  
 
The contours form closed curves and P(x,y) goes to infinity when y=±(x+n) since gamma 
for any negative integer in unbounded. Alternate strip regions between the unit slope 
curves also show finite valued contours. The minimum contour value occurs near x=1.46 
and y=0 and has the value P=0.7844.  
 
Finally we look at the gamma function  Γ(z) when z=x+iy is a complex number. Here the 
best approach is to use the integral definition- 
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From the integral we see that Γ(x+iy) has a real and imaginary part represented by two 
different integrals. We find- 
 
                         Γ(1+i)= 0.4980156681-i0.1549498283  
 
so that Γ(1+i)·Γ(1-i)=|Γ(1+i)|2=0.2720290550..   . Also we have that- 
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We can also plot Γ(x+iy)=u+iv in the u-v plane. This can produce some interesting 
figures such as the following- 
 

 
In the first we plot Γ(z) for z=x+i to get a run-away spiral pattern. For the second figure 
we have set  z=1+iy. It produces a closed double loop. Many other plots are possible by 
just setting x or y to different constant values. 
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