
              PROPERTIES OF THE INTEGERS 6n1 
 
 
We have shown in several notes over the last few years that all primes above three 
have the form 6n1 but, at the same time, that not all 6n1 integers are prime. We 
wish in this note to investigate further the properties of all integers having the 
form 6n1. 
 
Let us begin by writing out the first few of these odd integers. They are- 
 
N[n]= 6n+1={7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67 , 73, 79, 85, 91, 97,..}  
 
and 
 
M[n]=6n-1={5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89,95,.. } 
 
If we look at all 26 prime numbers from 5 through 97, they read- 
 
P={5, 7, 11,13, 17, 19, 23, 29, 31, 37. 41, 43, 47, 49, 53, 55, 61, 67, 71, 73, 
      77, 79, 83, 89, 91, 97} 
 
That is, with  the exception of 25, 35, 49, 55, 65, 77, 85, 91, and 95 , all numbers 
of the form N[n] and M[n] are primes. The exceptions are semi-primes of the 
form- 
 
     25=5x5   35=5x7   49=7x7   55=5x11  65=5x13   77=7x11  
     85=5x17  91=7x13   95=5x19  etc. 
 
or  possibly  multiple prime products such as  834=7x7x17=6(139)-1. Since semi-
primes are the product of two primes 6n1 and 6m1, it is clear that all semi-
primes also will have the form 6k1. In terms of modular arithmetic we have that- 
 
            (6n+1) mod(6)=1   and  (6n-1) mod(6)=5 
 
So that a mod(6) operation on any prime above 3 or semi-prime above 9 will yield 
1 or 5. Take, for example,  the semi-prime – 
 
                 6497 = 73x89   which yields 6497 mod(6)=5 
 
Its prime components yield 73 mod (6)=1  and 89 mod (6)=5 
 
Because of the cyclical nature of a mod (6) operation it should be clear that a 
mod(6) operation yielding 5 is the same as saying it lies along the line 6n-1. These 
facts allow us to plot all primes and semi-primes within the polar r- plane at the 
intersection of two diagonal lines and a hexagonal spiral defined by – 
 



                                  r=integer  ,   = integer /3 
 
The diagonal are 6n+1 and 6n-1 ( or the equivalent 6n+5). Here is the resultant 
picture-   

 
What is most interesting about this result is that all primes above 3 lie just along 
the lines 6n+1 and 6n-1 with no exception found for numbers as high as six digits  
We call this collective group of primes the Q Primes. It is amazing that no one has 
realized this fact previously considering all the work mathematicians have put 
into obtaining the location of primes along an Ulam Spiral. The rather scattered 
location of primes found there really shows no more than the fact that prime 
numbers above 3 must be of the form 6n1. From our observations, we can state 
at once that the huge number- 
 
                         7418881428277763156497323 
 
is a composite since it is of the form 6(n)+3. However the number- 
 
                   6(34783750937)+1=208702505623 
 
could be either prime or possibly a composite. A prime test shows it to be prime. 
 



To factor a large semi-prime N=pq we can use the fact that- 
 
             ( 6n1)(6m1)=36nm6(n+m)+1=N 
 
and then solve this equation as the algebraic equation m=f(n). Let us demonstrate 
this by looking at the semi-prime- 
 
                                 4717=6(786)+1 
 
We get  – 
 
                           6 nm+(n+m)=4716/6=786 
 
or 
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To solve this for integer values we can restrict ourselves to  |n|<sqrt(N)/611. 
Carrying out the search we find  m= -15  at  n=-9. That is- 
 
                [6(9)-1][6(15)-1]=53 x 89=4717 
 
The reason for the minus signs on n and m stems from the fact that we initially 
assumed p=6n+1 and q=6m+1. This usually will not cause a problem in the 
solution method. However, when N becomes considerably larger the search will 
need to extend over a much larger range  -sqrt(N)/6<n<sqrt(N)/6 making the 
search quite time consuming. This is the reason large semi-primes can be used 
securely in cryptography. It is extremely time consuming to factor a 100 digit 
long semi-prime into its two prime components. 
 
Two of the more famous prime number groups can be generated  by the simple 
formulas- 
 
                            M[p]=2^p-1    and F[n]=2^2^n 
 
Here ^ indicated a power. When these numbers are prime they are known, 
respectively, as  Mersenne Primes  and Fermat Primes. The first few Mersenne 
Primes read- 
 
             M[p]={3, 7, 31, 127, 8191, 131071, 524287, …} 
 
The numbers increase in size very rapidly. To this day less than 50 of these 
primes have been found although it is believed there are an infinite number of 
them. Note that each of thee Mersenne Primes above 3 have the form 6n+1. They 
always end in 1 or 7. They are found along the 6n+1 curve in the above diagram. 
The Mersenne Primes are much rarer than the Q primes. 



 
The Fermat Primes read- 
 
                           F[n]={5, 17, 257, 65537} 
 
Euler was the first to show that 232+1 is not a prime. Mathematicians later 
showed, within limits of their computers to handle large numbers, that no Fermat 
numbers above 24+1 is prime. It is still an open question whether this continuous 
to hold for all n in n^2^n. Notice that the Fermat numbers and primes all have the 
form 6n-1 and hence they will be found along the 6n+5 branch in the above graph. 
Again they are quite sparse compared to all Q Primes of the form 6n-1 , of which 
we expect an infinite number.  
 
Consider next multiplying together two numbers 6n+1 and  6m+1 to see how they 
relate to a semi-prime  6k+1. Here n, m, and k are all taken as integers. We get- 
          
                  k=nm+(n+m)/6 
 
So if n=30 and m=66, we get 6(30)+1=181 and 6(66)+1=397. Also – 
 
                 k=6nm+(n+m)=11976 
 
This means we have the factored number- 
 
                   71857=181 x 397 
 
Also we could take the primes 6n+1 and 6m-1 to generate a semi-prime 6k-1. 
This produces- 
 
                   k=6nm+(m-n) 
 
If we take n=121 and m=287, we get k=208528. This says that we have the 
factored number- 
 
                1251167=727 x 1721 
 
Thus we can always start with two integers n and m, which produce the primes 
primes p=6n1 and q=6m1, to generate a k and hence N=pq. This is the easy 
part consisting of simply multiplying two prime numbers together. The hard part 
of the problem is trying to reverse things by starting with a known value of k for a 
semi-prime and then  trying to find n and m.  This involves a search over integers 
n and m simultaneously and represents essentially the approach used above. 
Again, if k=37 so that N=221=6(37)-1, we have 37=6nm+m-n with n<3. So trying 
n=2 we get 37=12m+m-2 or 39=13m. Thus n=2 and m=3. We can write- 
 
                            221=[6(2)+1][6(3)-1]=13 x 17  



 
Any integer power ‘a’ of 6n1, can be expanded in its binomial form- 
 

      1.....!2/)6(!1/)6()6()16( 21   aaaa nnann  
 
From it one sees at once that – 
 
                               (6n+1)a mod(6)=1 
Likewise one has – 
 
                                (6n-1)a mod(6)=5 
 
This means any integer power of 6n1 stays on the same diagonal. Take the prime 
6(3)+1=19. Its 17th power equals – 
 
           N=5480386857784802185939   with N mod(6)=1 
 
It, of course , must be a composite number since the positive integer power of any 
prime  must be a composite.  From this type of result it becomes clear that the 
density of Q primes will  become progressively smaller relative to the composites 
as N gets larger and larger. This makes sense in terms of the fundamental theorem 
for prime numbers which states that the number of primes lying between N1 and 
N2 for larger numbers approximately equals- 
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To further verify the fact that all primes above p=3 are of the form 6n1 let us 
look in the range between the 100th prime of 541 and the 110th prime of 601. All 
eleven primes in this range may be written in the form 6n1 as shown- 
 
                     541=6(90)+1                   577=6(96)+1 
                     547=6(91)+1                   587=6(98)-1 
                     557=6(93)-1                    593=6(99)-1 
                     563=6(94)-1                    599=6(100)-1 
                     569=6(95)-1                    601=6(100)+1 
                     571=6(95)+1 
              
In this case the fundamental theorem would predict- 
 
                    601/ln(601)-541/ln(541)=7.96 
 
primes. This number is a little low compared to the actual 11 do to the fact that 
the fundamental theorem only strictly applies when N heads to infinity. The actual 



number of primes  in the larger range 1N10,000 is 1229. That is, there are 8771 
composites in this range. The fundamental theorem predicts- 
 
                         10,000/ln(10,000)=1085 
 
primes , so still a little low, but closer than the previous estimate. We can write 
the 1229th prime as – 
 
                                9973=6(1662)+1 
 
The 10,000th prime reads- 
 
                               104729=6(17455)-1 
 
 
 
 
May 25, 2015 
 
 
 


