EGM5533: Applied Elasticity and Advanced Mechanics of Solids

- **Instructor**: Raphael T. Haftka haftka@ufl.edu

- **Objectives**:
 - Solidify students’ knowledge of analytical methods for simple structural analysis problems.
 - Allow them to use this knowledge to assess whether a solution obtained numerically is likely to be at least approximately right.
Topics

- Theory of stress and strain
- Stress-strain-temperature relation
- Inelastic material behavior
- Energy methods
- Torsion of shafts
- Bending of beams
- Thick cylinders
- Stability of columns
- Fracture mechanics
Homework and exams

• **Homework**: 10% penalty per day after due date (distance students have two extra days). Cannot be submitted after a solution is posted (2-3 days after it is due).

• **Exams**: Closed book, except for one 8.5"x11" page (student may bring a magnifier). No calculators. No make-up exams. **Distance students must take at same time!** Students who miss an exam because of valid medical problem or family emergency will have final exam count also for missed exam. Comprehensive final exam is optional for other students; if taken it may lower grade.
My idiosyncrasies

• I like to have fun teaching
 – Help students do well
 – Encourage participation
 – Minimize surprises (grade predictor)

• I value communication skills
 – Homework and exam grades depend on clarity

• I emphasize the what over the how
 – Understanding concepts and jargon is as important as solving problems

• I prefer letters to numbers and minimal use of calculators (none on exam).
Front-loaded course

• My goal is to have you work hard at the beginning of the semester when I cover the most important material (qualifying exam)

• If you do well in first two exams, final exam covers only last third of material

• Comprehensive option is tough!

• Extra credit work spread throughout the semester
2.1 Definition of stress at a point

- **Stress definition**

 Stress Vector:

 \[\sigma = \lim_{\Delta A \to 0} \left(\frac{\Delta F}{\Delta A} \right) \]

 Shear Stress Vector:

 \[\sigma_S = \lim_{\Delta A \to 0} \left(\frac{\Delta F_S}{\Delta A} \right) \]

- **What area?**

Normal Stress Vector:

\[\sigma_N = \lim_{\Delta A \to 0} \left(\frac{\Delta F_N}{\Delta A} \right) \]

Figure 2.2 Force transmitted through incremental area of cut body.
2.2 Stress notation

First subscript refers to the direction of the normal.
Second subscript refers to the direction of the stress.

Due to moment equilibrium:

$$
\sigma_{xy} = \sigma_{yx} \quad \sigma_{xz} = \sigma_{zx} \quad \sigma_{yz} = \sigma_{zy}
$$

$$
\sigma_x = \sigma_{xx} i + \sigma_{xy} j + \sigma_{xz} k
$$

$$
\sigma_y = \sigma_{yx} i + \sigma_{yy} j + \sigma_{yz} k
$$

$$
\sigma_z = \sigma_{zx} i + \sigma_{zy} j + \sigma_{zz} k
$$

$$
\begin{bmatrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\
\sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\
\sigma_{zx} & \sigma_{zy} & \sigma_{zz}
\end{bmatrix}
=
\begin{bmatrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\
\sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\
\sigma_{zx} & \sigma_{zy} & \sigma_{zz}
\end{bmatrix}
$$
Reading assignment

Section 2.4: Question: What stress measures stay constant as we change coordinate systems?

Source: www.library.veryhelpful.co.uk/Page11.htm