Problem 1

Apply the translation theorem to find the Laplace transforms of the functions.

\[f(t) = t^4 e^{\pi t} \]

The translation theorem states that \(L \{ e^{at} f(t) \} = F(s - a) \).

For this problem, \(f(t) = t^4 \) and \(a = \pi \).

Therefore \(L \{ e^{\pi t} t^4 \} = \frac{4!}{(s - \pi)^5} = \frac{24}{(s - \pi)^5} \)
Problem 3

Apply the translation theorem to find the Laplace transforms of the functions.

\[f(t) = e^{-2t} \sin 3\pi t \]

The translation theorem states that \(L \{ e^{at} f(t) \} = F(s - a) \).

For this problem, \(f(t) = \sin 3\pi t \) and \(a = -2 \).

Therefore \(L \{ e^{-2t} \sin 3\pi t \} = \frac{3\pi}{(s + 2)^2 + 9\pi^2} \)
Problem 7

Apply the translation theorem to find the inverse Laplace transforms of the functions.

\[F(s) = \frac{1}{s^2 + 4s + 4} \]

\(F(s) \) can be rewritten as \(F(s) = \frac{1}{(s + 2)^2} \). This transform corresponds to an inverse of the form \(f(t) = t \). However we have \(s + 2 \) instead of \(s \). So \(a = -2 \) in the translation theorem.

Therefore \(f(t) = te^{-2t} \)
Problem 9

Apply the translation theorem to find the inverse Laplace transforms of the functions.

\[F(s) = \frac{3s + 5}{s^2 - 6s + 25} \]

\[F(s) \text{ can be rewritten as } F(s) = \frac{3(s - 3) + 5 + 9}{(s - 3)^2 + 16} = \frac{3(s - 3)}{(s - 3)^2 + 16} + \frac{14}{(s - 3)^2 + 16}. \]

This transform corresponds to an inverse of the form \(f(t) = \cos t + \sin t \). However we have \(s - 3 \) instead of \(s \). So \(a = 3 \) in the translation theorem.

Therefore \(f(t) = e^{3t}(3 \cos 4t + (7/2) \sin 4t) \).