1. The beam of a rectangular thin-walled section (i.e., \(t \) is very small) is designed to carry both bending moment \(M \) and torque \(T \). If the total wall contour length \(L = 2(a+b) \) is fixed, find the optimum \(b/a \) ratio to achieve the most efficient section if \(M = T \) and \(\sigma_{\text{allowable}} = 2\tau_{\text{allowable}} \). Note that for closed thin-walled sections such as the one in the figure, the shear stress due to torsion is \(\tau = T/(2abt) \).

Hint: The most efficient section maximizes the section modulus. Write the section modulus as a function of \(a \) or \(b \). First assume that bending stress reaches \(\sigma_{\text{allowable}} \) and check if shear stress is less than its allowable. If not, assume shear stress reaches \(\tau_{\text{allowable}} \) and check if bending stress is less than its allowable.

2. The dimensions of a steel (300M) I-beam are \(b = 50 \text{ mm}, \ t = 5 \text{ mm}, \) and \(h = 200 \text{ mm} \). Assume that \(t \) and \(h \) are to be fixed for an aluminum (7075-T6) I-beam. Find the width \(b \) for the aluminum beam so that its bending stiffness \(EI \) is equal to that of the steel beam. Compare the weights-per-unit length of these two beams. Which is more efficient weight-wise? The densities of steel and aluminum are \(7.8 \) and \(2.78 \text{g/cm}^3 \), respectively.

3. Compare the load-carrying capabilities of two beams having the respective cross-sections shown in the figure. Use bending stiffness as the criterion for comparison. It is given that \(a = 4 \text{ cm}, \ t = 0.2 \text{ cm}, \) and the two cross-sections have the same area.