A NEW APPROACH FOR THE FACTORING OF LARGE SEMI-PRIMES

INTRODUCTION:

One of the incompletely solved problems in number theory is the rapid factoring of large semi-primes $\mathrm{N}=\mathrm{pq}$ into their prime components p and q . The most common way to produce such factoring is the general number field grid. It works but becomes impractical when attempting to factor semi-primes of 100 digit length or larger such as occur in public key cryptography. Over the last decade or so I have been involved in developing an alternate factoring method for any large semi-prime $\mathrm{N}=\mathrm{pq}$. Our procedure starts with the obvious identity-

$$
[p, q]=(p+q) / 2 \pm(q-p) / 2, \text { with } q>p
$$

Letting $S=(p+q) / 2$ be the mean value and $R=s q r t\left(S^{\wedge} 2-N\right)$ the half difference, we get the starting identity-

$$
[\mathrm{p}, \mathrm{q}]=\mathrm{S} \mp \mathrm{R}=\mathrm{S} \mp \sqrt{S^{2}-N}
$$

This result tells us that if we know the value of S the problem solved. Furthermore S can be expressed in several other ways such as-

$$
S=[\sigma(N)-N-1] / 2=N f(N) / 2
$$

Here $\sigma(\mathrm{N})$ is the sigma function given in most advanced mathematics programs to at least Ns of twenty digit length and the $f(N)$ is our own number fraction parameter defined as $(p+q) / N$ for semi-primes.

Using the above formulas, we have at once that $N=455839$ yields $\sigma=457200$ so that $S=680$. This means-

$$
[p, q]=680 \mp \mathrm{sqrt}\left(680^{\wedge} 2-455839\right)=[599,761]
$$

We point out that this particular semi-prime is used in the literature to support the Lenstra Elliptic Curve Method for semi-prime factoring. The present factoring approach is much faster.

When N gets much larger than about 40 digit length my math program (MAPLE) takes too long to find the sigma function value. In that case one must return to evaluating S directly by going back to the original equation for $[p, q]$ given above. Here is the procedure-

FINDING $S=(p+q) / \mathbf{2}$:

We begin by noting that -

$$
p=\alpha \operatorname{sqrt}(N) \quad \text { and } \quad q=(1 / \alpha) \operatorname{sqrt}(N)
$$

, with the unknown α lying in the range $0<\alpha<1$. This implies that-

$$
S=\left[\left(1+\alpha^{\wedge} 2\right) /(2 \alpha)\right] \operatorname{sqrt}(N)
$$

When p and q are equal to each other, S is given by the nearest integer to sqrt(N). Since α is an unknown beforehand, one makes the substitution-

$$
[p, q]=\left(\mathrm{S}_{0}+\varepsilon\right) \mp \operatorname{sqrt}\left[\left(\mathrm{S}_{0} \wedge 2-\mathrm{N}\right)+2 \mathrm{~S}_{0} \varepsilon+\varepsilon^{\wedge} 2\right]
$$

, where $S_{0}=\left[\left(1+\alpha^{\wedge} 2\right) /(2 \alpha)\right] \operatorname{sqrt}(N)$ to the nearest integer. Here ε is a positive or negative integer which vanishes only when the correct value of α is used.

Let is demonstrate the procedure. Consider the seven digit semi-prime-
$N=4416941$ with the root of N being $\operatorname{sqrt}(N)=2101.651962$
Next choose $\alpha=0.7$. This yields $S_{0}=(1.49 / 1.4) \operatorname{sqrt}(N)=2237$ to the nearest integer. Next search
R until an integer value is found. The search program reads-

$$
\text { for } \varepsilon \text { from }-80 \text { to } 80 \text { do }\left\{\varepsilon, \operatorname{sqrt}\left[\left(\mathrm{S}_{0} \wedge 2-N\right)+4474 \varepsilon+\varepsilon^{\wedge} 2\right]\right\} \text { od }
$$

Solving, we get $\varepsilon=58$ and $R=922$. That is, $S=S_{0}+58=2295$. So we have the factorization-

$$
[p . q]=2295 \mp \operatorname{sqrt}\left(2295^{\wedge} 2-N\right)=2295 \mp 922=[1373,3217]
$$

LOCATING THE VALUE OF ALPHA FOR WHICH EPSILON VANISHES:

Once R has been found for one value of α, the value of α for which ε vanishes can be gotten by noting that $R=922$ remains unchanged for any other α in $0<\alpha<1$. So we have-

$$
(922)^{\wedge} 2=S_{0} \wedge 2-N
$$

A little manipulation allows us to re-write this as a quadratic in $\alpha-$

$$
\alpha^{\wedge} 2+[2(922) / \operatorname{sqrt}(N)] \alpha-1=0
$$

Solving, produces the result $\alpha=0.6533329$ for which ε vanishes. The following gives a graph of α versus ε for $N=4416941$ -

The critical value is found at $[\alpha, \varepsilon]=[0.653,0]$. Such a cross-over point will also be found for other Ns but located at different points along the α axis. The amount of searching will be greatly reduced if one is lucky enough to start with an α near the critical value.

SPEEDING UP THE SEARCH:

One way to decrease the number of searches for integer value R is to carry out brief limited searches for different values of α over a restricted range of $-b<\varepsilon<+b$. Most of these shorter searches will yield no integer values. However some lying near the critical value of α for a given N will register an integer solution. If one of these is found, the problem has essentially been solved. Let us demonstrate this search approach for the semi-prime-
$N=53891777$ where $\operatorname{sqrt}(N)=7341.10189$
Starting a restricted search in the strip $0<\varepsilon<30$ with $\alpha=0.9$ we get no solution. Next using $\alpha=0.8$, we find a solution at $\varepsilon=26$ yielding $R=1768$. This produces an $S=7525+26=7551$ and the factoring-

$$
[p, q]=7551 \mp \operatorname{sqrt}\left(7551^{\wedge} 2-53891777\right)=7551 \mp 1768=[5783,9319]
$$

The critical value is here determined by-

$$
\alpha^{\wedge} 2+[2 R / \operatorname{sqrt}(N)] \alpha-1=0
$$

Solving for α yields $\alpha=0.7877$. Note that we only needed to use positive ε in the search since $\alpha=0.8$ lies close to $\alpha=1$ were ε is positive. Negative ε will be found if $\alpha<0.7877$.

CONCLUDING REMARKS:

We have shown that large semi-primes $N=p q$ can be factored by a method based on the value of $S=(p+q) / 2=(\sigma-N-1) / 2=\left(1+\alpha^{\wedge} 2\right) /(2 \alpha) \operatorname{sqrt}(N)$. On modifying the S to $S+\varepsilon$, we vary ε until an integer value of the radical $R=\operatorname{sqrt}\left((S+\varepsilon)^{\wedge} 2-N\right)$ is found. By evaluating R over only smaller values of ε (at fixed α) the evaluation process is greatly speeded up. Several specific evaluations for Ns as high as eight digit length are factored.

U.H.Kurzweg

April 20, 2021
Gainesville, Florida

