About 2200 years ago the famous Greek mathematician Archimedes of Syracuse(287-212 BC)gave the first accurate bounds for the value of $\pi=3.1415926$... . By using a geometric approach involving regular polygons inside and outside of a unit circle, he was able to come up with the estimate-

$$
3+10 / 71=3.140845<\pi<3+1 / 7=3.142857
$$

using a regular polygon of 96 sides. We want in this article to repeat his calculations for regular polygons of $n=2^{m}$ sides.

Our starting point is the following sketch-

We have a unit radius circle of area π showing the pie shaped parts of an inscribed and circumscribed regular polygon. Geometry shows that the total area of the inner polygon will be-

$$
A_{i n}=(n / 2) \sin (2 \pi / n)
$$

The outer polygon has the larger area-

$$
\mathrm{A}_{\text {out }}=\mathrm{n} \tan (\pi / \mathrm{n})
$$

Since we will be dealing with polygons with a large number of sides it pays to define $n=2^{m}$. This produces the bound relation-

$$
2^{m-1} \sin \left(45 / 2^{m-3}\right)<\pi<2^{m} \tan \left(45 / 2^{m-2}\right)
$$

, where the angles are measured infractions of degrees. Starting with $m=4$, we get-

$\mathrm{m}=4$	$\mathrm{n}=16$	$3.061<\pi<3.182$
$\mathrm{~m}=6$	$\mathrm{n}=64$	$3.136<\pi<3.144$
$\mathrm{~m}=8$	$\mathrm{n}=256$	$3.1412<\pi<3.1417$
$\mathrm{~m}=10$	$\mathrm{n}=1024$	$3.14157<\pi<3.14160$
$\mathrm{~m}=12$	$\mathrm{n}=4096$	$3.141591<\pi<3.141593$
$\mathrm{~m}=14$	$\mathrm{n}=16384$	$3.14159257<\pi<3.14159269$

So it takes a polygon of 16384 sides to get a six place accuracy on π. The method works but will require ms much larger than 14 to get accuracies of fifty digits or so. The above $\mathrm{m}=14$ case is about as accurate as the well known Otto ratio of $\pi \approx \frac{355}{113}=3.1415927$, obtainable via continued fractions. The most accurate value of π obtained by applying the Archimedes method is due to the Dutch-German mathematician Ludolph van Ceulen(1540-1610). He used a polygon of $n=2^{62}$ sides to find π out to 35 places. He was so proud of his achivement that he had the result engraved on his tombstone. The modern way to calculate π to high accuracy is to use arctan formulas, AGM methods, or iteration approaches.
U.H.Kurzweg

April 16, 2021
Gainesville, Florida

