SOLUTION OF SIMULTANEOUS DIOPHANTINE EQUATIONS

A Diophantine Equation is an expression involving two variables x and y taken to specified powers and added or multiplied. Only integer values for x and y are allowed. The simplest set of two simultaneous Diophantine equations is the linear form-

$$
a x+b y=c \text { with } d x+e y=f
$$

with a, b, c, d, e, and f as specified integers. By eliminating either x or y, these two equations have the closed form solution-

$$
\mathbf{x}=\frac{(b f-c e)}{(b d-a e)} \quad \text { and } \quad y=\frac{(c d-a f)}{(b d-a e)}
$$

These values can also be obtained by solving the matrix equation-

$$
\left[\begin{array}{ll}
a & b \\
d & e
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
c \\
f
\end{array}\right]
$$

To have a bounded solution it is necessary that the determinant of the $\mathbf{2 \times 2}$ matrix shown does not vanish.

We want in this note to consider more complicated pairs of Diophantine Equations in which x and y are taken to specified powers different from one.

We begin by looking at the non-linear Diophantine Pair -

$$
a \operatorname{sqrt}(x)+b y=c \quad \text { and } \quad d x+e \operatorname{sqrt}(y)=f
$$

These cannot be solved by matrix methods but can be found by elimination. From the first we have $y=[c-a \operatorname{sqrt}(x)] / b$. Plugging into the second produces-

$$
x^{\wedge} 2-A x+B s q r t(x)=C
$$

, where $A=2 f / d, B=(a / b)(e / d)^{\wedge} 2$, and $C=\left(c e^{\wedge} 2-b f^{\wedge} 2\right) /\left(b d^{\wedge} 2\right)$. Since sqrt(x) must be an integer, we know x has one of the values $\mathbf{0 , 1 , 4 , 9 , 1 6}, \ldots$ Also A, B, and C must be integers. For specified positive or negative integer values of A, B, and C, the equation in x can be solved. We are looking for those solutions where x is equal to the square of an integer. One case for which his works is $A=14, B=1$, and $C=38$.It produces-

$$
\operatorname{sqrt}(x)+y=11 \quad \text { and } \quad x+\operatorname{sqrt}(y)=7
$$

and solves as $x=4$ and $y=9$. A graphic solution is also possible as shown-

Consider next the non-linear simultaneous Diophantine Equations-

$$
x^{\wedge} 2+y=6 \quad \text { with } \quad x+y^{\wedge} 2=2
$$

These can be converted to the quartic algebraic equation-

$$
y^{\wedge} 4-4 y^{\wedge} 2+y=2
$$

By inspection one sees at once that $\mathbf{y}=\mathbf{2}$ satisfies the equation meaning $\mathbf{x}=\mathbf{2}$ also.by looking at the original pair one sees that the integer solution
$[x, y]=[2,2]$ is given by the intersection of two parabolas. Here is the graph-

GRAPHICAL SOLUTION OF TWO DIOPHANTINE EQUATIONS

Next consider the Diophantine Pair-

$$
x^{\wedge} 2+y^{\wedge} 2=c \quad \text { and } x+y=k
$$

, where c and k are specified constants. The first equation represents a circle of radius $r=s q r t(c)$ and the second a straight line with slope of minus one and value $y=k$ at $x=0$. Eliminating x or y produces the solutions-

$$
x=\left(k^{\wedge} 2-c\right) / 2 k \quad \text { and } y=\left(k^{\wedge} 2+c\right) / 2 k
$$

To be valid solutions we must have k unequal to zero and the two quotients to be integers. When $k=3$ and $c=9$, we get the two Diophantine solutions $[\mathrm{x}, \mathrm{y}]=[3,0]$ and $[0,3]$. A graphical representation of the two integer solutions follow-

As a final example consider the simultaneous equations-

$$
(\mathbf{p}+\mathbf{q}) / 2=\mathbf{S} \text { and } \mathbf{p q}=\mathbf{N}
$$

Here \mathbf{p} and \mathbf{q} are the unknown prime factors of the semi-prime $\mathbf{N}=\mathbf{p q}$ and S is the mean value of the two prime components. Solving for p and q , we get-

$$
p=S-s q r t\left(S^{\wedge} 2-N\right) \quad \text { and } q=S+\operatorname{sqrt}\left(S^{\wedge} 2-N\right)
$$

Since both p and q are required to be integers, it is sufficient to have $\operatorname{sqrt}\left(\mathbf{S}^{\wedge} 2-\mathrm{N}\right)$ be an integer.

Consider the semi-prime $N=77$. Here $S=9$ produces the radical 2 and we get $\mathbf{p}=\mathbf{9 - 2}=7$ and $\mathbf{q}=9+2=11$. The factoring of large semi-primes $\mathbf{N}=\mathbf{p q}$ plays a significant role in connection with public key cryptography. If one knows the value of the sigma function encountered in number
theory, the value of S can also be written as $S=(\sigma-1-N) / 2$. So the semiprime $N=77$ has the sigma function $\sigma=96$ leaving $S=(96-1-77) / 2=9$.

U.H.Kurzweg
March 7, 2022
Gainesville, Florida

