FINDING ALL ROOTS Of $\mathrm{f}(\mathrm{z})$ USING CONTOUR TECNIQUES AND THE NEWTON-RAPHSON METHOD

INTRODUCTION:

The roots of a complex function $f(z)$ can be obtained via the complex version of the Newton-
 The iteration used reads-

$$
z_{n+1}=z_{n}-\left[f\left\{z_{n}\right)\right] / f^{\prime}\left(z_{n}\right)
$$

Unlike the case where $f(z)$ is real, finding the value of z_{0} becomes more complicated. We have found that one of the best ways to locate z_{0} is to draw a contour map of the square of the amplitude of $f(z)$ and then picking a point lying within the smallest of the contour value near a zero. It is our purpose here to carry out such iterations for several different $f(z) s$.

ZEROES OF F(Z)=Z^2+i:

Here we have-

$$
F(z)=\left(x^{\wedge} 2-y^{\wedge} 2\right)+i(2 x y+1) \text { with } z=x+i y=r \exp (i \theta)
$$

On contour plotting $|f(z)|^{\wedge} 2$ we have the picture-

It looks like a good starting point for the complex Newton-Raphson Iteration will be $z_{0}=[-1+i] / 0.7$ or $[1-i] / 0.7$. To find the zero within the 4 th quadrant we iterate-

$$
z_{n+1}=z_{n}-\left[z_{n} \wedge 2+i\right] /\left(2 z_{n}\right) \text { subject to } z_{0}=[1-i]^{*} 0.7
$$

this yields-

$$
z_{1}=0.7(1-i), \quad z_{2}=0.7071(1-i), \text { and } z_{3}=0.70710678(1-i)
$$

Thus one converges very rapidly toward the constant $1 /$ sqrt(2) $=0.707106781$... The two exact solutions become the complex conjugates $z= \pm(1-i) /$ sqrt(2)

ZEROS OF THE CUBIC F(Z)-Z^3+2Z-3:

Here the countour-map of $|f(Z)|^{\wedge} 2$ looks like this-

It indicates three zeros with one of these being $z=1$. The other two are complex conjugates given by solving $z^{\wedge} 2+z+3=0$. The roots are $z=(-1 / 2)[1 \pm i s q r t(11)]$. Applying the Newton-Raphson Method to the zero in the 2nd quadrant, we start with $z_{0}=0.5+\mathrm{i} 1.6$ and then iterate-

$$
z_{n+1}=z_{n}-\left[z_{n} \wedge 3-2 z_{n}-3\right] /\left[3 z_{n} \wedge 2+2\right]
$$

The first iteration already yields-

$$
z_{1}=0.4988562654+i 1.660549711
$$

The exact value is $\mathrm{z}=-0.5+\mathrm{i} 1.658312$.

ZEROS OF $F(z)=Z^{\wedge} \mathbf{6 - 3 i Z \wedge} \mathbf{2 + 5}$:

Here we know from Gauss that the absolute value of $f(z)$ will have six roots. Where they lie in the z plane follows from the following contour map-

Here all roots are non-real with two falling in both the $2^{\text {nd }}$ and $4^{\text {th }}$ quadrant and one each in the first and $3^{\text {rd }}$ quadrant. One could probably obtain the exact solutions by using the new variable Psi $=z^{\wedge} 2$ and then solve the Psi equation as a cubic. This however would require considerable effort and therefore not worth pursuing. The Newton-Raphson Method however is ideal for such higher order complex number polynomials. Let us show how to find the zero in the fourth quadrant near $z_{0}=0.9-0.6 \mathrm{i}$. The iteration reads-

$$
z_{n+1}=z_{n}-\left[G\left(z_{n}\right) / G\left(z_{n}\right)^{\prime}\right]
$$

with -

$$
G=x^{\wedge} 6+6 i x^{\wedge} 5 y-15 x^{\wedge} 4 y^{\wedge} 2-20 i x^{\wedge} 3 y^{\wedge} 3+15 x^{\wedge} 2 y^{\wedge} 4+6 i x y^{\wedge} 5-y^{\wedge} 6-3 i x^{\wedge} 2+6 x y+3 i y^{\wedge} 2+5
$$

Starting with $\mathrm{z}_{0}=0.9-0.6 \mathrm{i}$, we find $\mathrm{z}_{1}=0.8903+0.6550 \mathrm{i}$, and $\mathrm{z}_{2}=0.89524-65441 \mathrm{i}$. A computer solution places this root at $\mathrm{z}=0.895211-0.654438 \mathrm{i}$. This means the second iteration already gives the root location to four place accuracy.

CONCLUSION:

We have shown that any continuous function $f(z)$ can have multiple roots which can be both real or complex. By first using a contour plot of the square of the absolute value of $|f(z)|$ one can determine near what point $f(z)$ is to be evaluated to quickly locate a root via iteration using the complex version of the Newton-Raphson Method. These days most advanced mathematics
programs, such as MAPLE or MATHEMATICA, have built in programs which quickly find zeros of any complex function $f(z)$ by iteration in split seconds.
U.H.Kurzweg

April 5, 2021,
Gainesville, Florida

