SEMI-PRIMES AND THEIR FACTORS

Semi-primes are defined as $N=p q$, where p and q are its prime components. Without loss of generality one knows that-

$$
p<\operatorname{sqrt}(N)<q
$$

Such numbers are very easy to construct via simple multiplication but are notoriously difficult to factor when the number of digits in N becomes large. It is this property which makes semiprimes play a significant role as public keys in cryptography. We wish in this note to further look at properties of $\mathrm{N}=\mathrm{pq}$.

We begin by defining the average value of p and q as $S=(p+q) / 2$. Also we define the half difference between q and p as $R=(q-p) / 2$. These new definitions allow us to write the semiprime as-

$$
S^{\wedge} 2-R^{\wedge} 2=N
$$

Both S and R must be integers. This formula represents essentially one quarter of a hyperbola in the range $0<S<\infty$ and $0<R<\infty$. Here is its graph-

Note that there is only one point [$\mathrm{S}_{0}, \mathrm{R}_{0}$] along this hyperbola where S and R both have finite integer values. For the simple case of $N=77$ we find $\left[S_{0}, R_{0}\right]=[9,2]$ meaning that $p=7$ and $\mathrm{q}=11$. Using the definition of S , one can also write-

$$
S=[\sigma(N)-N-1] / 2
$$

, where $\sigma(\mathrm{N})$ is the sigma function of number theory. It $[\sigma(\mathrm{N})]$ represents essentially the sum of all divisors of N . One is fortunate in that sigma(N) of up to about 40 digit length is given directly by most advanced computer programs.

Let us demonstrate the factoring of the Fermat number $N=2^{\wedge} 32+1=4294967297$, where $\operatorname{sqrt}(N)=65536.00001$. Here our MAPLE program yields in a split second that-

$$
\sigma(N)=4301668356
$$

From this we have $\mathrm{S}=3350529$ and $\mathrm{R}=3349888$. Combining, we get the factors-

$$
p=S-R=641 \quad \text { and } \quad q=S+R=6700417
$$

Pushing things to the limit of our home laptop, I next look at the forty digit long semi-prime-

$$
N=3092054054324908237309972173911256672979
$$

I constructed this number using an earlier discussed method found on our MATHFUNC page. Using this approach, we find the prime numbers-

$$
\mathrm{p}=\exp (2) \mathrm{sqrt}(23) / \sin (\mathrm{Pi} / 3)-27=40918739810545118939
$$

and-

$$
q=\exp (3) \cosh (2)+32=75565720465517824361
$$

When multiplied together they yield the 40 digit long semi-prime given above.
Next we pretend that we don't know yet the values of p and q, and proceed to use our PC to evaluate -

$$
\mathrm{S}=\text { sigma(N) }-\mathrm{N}-1=58242230138031471650
$$

It took just one minute to generate sigma(N) for this result. With S in hand, one next finds-

$$
R=s q r t\left(S^{\wedge} 2-N\right)=17323490327486352711
$$

Combining we have the prime factors-

$$
p=S-R=40918739810545118939 \quad \text { and } \quad q=S+R=75565720465517824361
$$

It is amazing how fast this factoring approach works for all semi-primes forty digit length or less. When going to sill larger digit Ns, the time to generate S rises dramatically and thus falls out of the range obtainable with one's PC. However with supercomputers one should be able to factor semi-primes as high as 100 digit length, thus making public key cryptography vulnerable. It is clear that the best approach for factoring still larger semi-primes is to find an improved method for generating sigma(N). If such a method is found it will be much faster than presently employed generalized grid or elliptic curve approaches.

Going back to the above graph for $S^{\wedge} 2-R^{\wedge} 2=N$, we see that S, R, and $\operatorname{sqrt}(N)$ form a right triangle with S being the hypotenuse. The triangle looks as follows-

THE SEMI-PRIME TRIANGLE

For $N=77$ we have sqrt(77)=8.774964... , $R=2$, and $S=9$. That is, $R^{\wedge} 2+N=S^{\wedge} 2$. The tangent of the lower left vertex equals sqrt[(S^2/N)-1].

As already mentioned, finding sigma(N) values for semi-primes much above forty digit length becomes time prohibitive using one's home PC. There is, however, no difficulty in finding $\sigma(N)$ once p and q are known. We there have-

$$
\sigma(N)=1+p+q+p q
$$

For $N=77$ this produces $\sigma=96$, while for $N=3092054054324908237309972173911256672979$ we find-

$$
\sigma(N)=2 S+1+N=3092054054324908237426456634187319616280
$$

Note that for the second larger N we find N and $\sigma(N)$ match each other for the first twenty digits or so. This follows from the fact that $p q \gg 1+p+q$.
U.H.Kurzweg

July 1, 2021
Gainesville, Florida

