APPOXIMATIONS FOR ANY TRIGONOMETRIC FUNCTION USING LEGENDRE POLYNOMIALS

About a decade ago(see https://www2.mae.ufl.edu/~uhk/TRIG-APPROX-PAPER.pdf) while studying definite integrals involving the product of rapidly oscillating Legendre Polynomials and a second slowly varying function $\mathrm{f}(\mathrm{ax})$ in the range $0<x<1$, we came up with the following important integral and its solution-

$$
\mathrm{J}(\mathrm{n}, \mathrm{a})=\int_{x=0}^{1} P(2 n+1, x) \sin (a x) d x=\left[\frac{1}{a^{2 n+2}}\right][N(n, a) \sin (a)-M(n, a) \cos (a)]
$$

Here N and M are polynomials in n and a, while $P(2 n+1, x)$ are the odd Legendre Polynomials which have value of $P(2 n+1,0)=0$ and $P(2 n+1,1)=1$ with a total of n zeroes in $0<a<1$. If one now lets n become large, the value of $J(n, a)$, when multiplied by the power of $a^{\wedge}(2 n+2)$, approach zero, leaving one with the approximations-

$$
\tan (\mathrm{a}) \approx T(n, a)=\mathrm{M}(\mathrm{n}, \mathrm{a}) / \mathrm{N}(\mathrm{n}, \mathrm{a})
$$

The values for explicit values for the polynomials $M(n, a)$ and $N(n, a)]$ are easiest to find using the operation-

$$
\operatorname{collect}[J(\mathrm{n}, \mathrm{a}),\{\sin (\mathrm{a}), \cos (\mathrm{a})\}] .
$$

The larger n is taken the longer the quotient for $\mathrm{T}(\mathrm{n}, \mathrm{a})$ becomes. The above method is now referred to in the literature as the KTL Method (for Kurzweg, Timmins, Legendre). Once that approximation for $\tan (a)$ is found, other functions such as $\sin (\mathrm{a})$ and $\cos (\mathrm{a})$ follow directly from the identities-

$$
\sin (\mathrm{a}) \approx S(n, a)=\frac{M(n, a)}{\sqrt{M(n, a)^{2}+N(n, a)^{2}}} \quad \text { and } \quad \cos (a) \approx C(n, a) \frac{N(n, a)}{\sqrt{M(n, a)^{2}+N(n, a)^{\wedge 2}}}
$$

We have evaluated $T(n, a)$ for $n=1,2,3,4$, and 5 . Here are the results-

```
N(1,a)=6a^2-15
M(1,a)= a^3-15a
N(2,a)= 15a^4-420a^2+945
M(2,a)= a^5-105a^3+945
N(3,a) = 28a^6-3150a^4+62370a^2-135135
M(3,a)= a^7-378a^5+17325a^3-135135a
N(4,a)=45a^8-13860a^6+945945a^4-16216200a^2+34459425
M(4,a)= a^9-990a^7+135135a^5-4729725a^3+34459425a
N(5,a)=66a^10-45045a^8+7567560a^6-413513100a^4+6547290750a^2-13749310575
M(5,a)=a^11-2145a^9+675675a^7-64324260a^5+1964187225a^3-13749310575a
```

One sees that the polynomials for $N(n, a)$ start with $a^{\wedge}(2 n)$ and those for $M(n, a)$ with $a^{\wedge}(2 n+1)$. This implies rapid polynomial length increase with n. The accuracy of the approximations also increase with increasing length. A measure of the technique's accuracy for $T(n, a)=M(n, a) / N(n, a)$ is indicated by looking at the simple $a=1$ case. Here are the $\tan (1)$ estimates-

n	$T(n, 1)$
1	1.55
2	1.557407
3	1.55740772
4	1.557407724654902
5	1.557407724654902230506

These results should be compared with the exact value-

```
tan(1)= 1.557407724654902230506974807458...
```

It shows that the approximations for the tangent of one radian to be good to 15 places after the decimal for $n=4$ and to 21 places for $n=5$. We have cut-off the approximations in the above $T(n, 1)$ table at the point they first depart from $\tan (1)$.

An important property of $\tan (a)$ is that-

$$
\tan (\pi / 4-\Delta) \tan (\pi / 4+\Delta)=1
$$

Thus , to evaluate $\tan (\mathrm{a})$ at any point, it will be sufficient to look at only the limited range $0<a<\pi / 4=0.785398$ keeping Δ at less than $\pi / 4$. Evaluation of trigonometric functions in this range is well suited for the KTL Method.

Next we get estimates for the other two most important trigonometric functions $\sin (a) \approx S(n, a)$ and $\cos (a) \approx C(n, a)$. We confine ourselves to $n=4$ and ' a ' $=1$. Here we expect an accuracy of about 15 decimal places. Substituting in the values of $\mathrm{N}(4,1)$ and $\mathrm{M}(4,1)$, we find-

$$
\sin (1) \approx \frac{M(4,1)}{\sqrt{N(4,1)^{2}+M(4,1)^{2}}}=0.841470984807896
$$

and

$$
\cos (1) \approx \frac{N(4,1)}{\sqrt{\left.N(4,1)^{2}+M(4,1)^{\wedge} 2\right)}}=0.5403023058681397
$$

, where we have retained only the first 15 and 16 digits agreeing with the exact values. The accuracy of our $\mathrm{S}(\mathrm{n}, \mathrm{a})$ and $\mathrm{C}(\mathrm{n}, \mathrm{a})$ approximations will improve considerably as 'a' is lowered from $\mathrm{a}=1$. So, for example, $\sin (\pi / 6)=\sin (30 \mathrm{deg})$ will yield the $n=4$ result-

$$
S(4, \pi / 6)=0.4999999999999999999997
$$

This is accurate to 21 places when compared to the exact solution $\sin (\pi / 6)=0.5$.

We have shown above that the KTL Method works great for values of ' a ' lying in the range $0<a<1$ and that the $n=4$ approximations will bring any trigonometric combination of $\tan (a)$, $\sin (a)$, and $\cos (a)$ in this ' a ' range to better than 15 decimal place accuracy. These results are more accurate than any extant trigonometric math tables.
U.H.Kurzweg

October 15, 2021
Gainesville, Florida

