Around 1676 the famous mathematician and physicist Isaac Newton first played around with the known Binomial Theorem-

$$
(1+x)^{\wedge} n=1+n x+n(n-1) x^{\wedge} 2 / 2!+n(n-1)(n-2) x^{\wedge} 3 / 3!+\ldots=\sum_{m=0}^{n} \frac{n!}{m!(n-m)!} x^{\wedge} m
$$

which had been examined extensively earlier for the case where n is a positive integer. Under those conditions the formula yields nth order polynomials whose coefficients are equivalent to elements in a standard Pascal Triangle. Thus -

$$
(1+x)^{\wedge} 4=1+4 x+6 x^{\wedge} 2+4 x^{\wedge} 3+x^{\wedge} 4
$$

What Newton realized is that x can be replaced by $f(x)$ and n take on negative and non-integer values. This observation allowed him to come up many additional expansions. We want in this article to rederive some of these.

Lets start with $x=-x$ and $n=(-1)$. This produces-

$$
1 /(1-x)=1+x+x^{\wedge} 2+x^{\wedge} 3+x^{\wedge} 4+0\left(x^{\wedge} 5\right)
$$

It represents the geometric series which converges for $0<x<1$. Replacing x by exp $(-x)$, yields the additional form-

$$
1 /[1-\exp (x)]=\sum_{m=0}^{\infty} \exp (-m x)
$$

Next take $x=1$ and $n=1 / 2$. Here we have-

$$
\operatorname{sqrt}(2)=1+1 / 2-1 / 8+1 / 16-5 / 128+7 / 256-\ldots
$$

To get an estimate for π we look at the area of a pie sliced area with small angle $\pi / 6$ of a unit radius circle . It reads, after some transformations,-

$$
\pi / 12=\operatorname{sqrt}(3) / 8+\left(\frac{1}{2}\right) \int_{u=0}^{1 / 4} \operatorname{sqrt}(u /(1-u)) d u
$$

Next expanding the sqrt term in the integral produces-

$$
\operatorname{sqrt}[u /(1-u)]=u^{\wedge}(1 / 2)+u^{\wedge}(3 / 2) / 2+3 u^{\wedge}(5 / 2) / 8+5 u^{\wedge}(7 / 2) / 16
$$

Upon integrating and applying the limits we have-

$$
\pi=3 \mathrm{sqrt}(3) / 2+1 / 2+3 / 80+9 / 1792+. .=3.14059
$$

The series offers a lower bound on $\pi=3.1415926$... but is not as good as certain arctan formulas, AGM methods, or iteration techniques for quickly finding accurate values for the irrational constant π to a large number of decimal places.

Another use Newton found for the Binomial Formula is the approximation for certain integrals. Take for example the integral-

$$
\mathrm{J}=\int_{t=0}^{1} \frac{d x}{1+x^{\wedge} 2}=\arctan (1)=\pi / 4
$$

On expanding $1 /\left(1+x^{\wedge} 2\right)$ as a Binomial Series and then integrating and putting in the limits we find-

$$
\mathrm{J}=1-1 / 3+1 / 5-1 / 7+1 / 9-
$$

So taking this expansion out to infinity one finds the famous Gregory Formula-

$$
\pi / 4=\sum_{n=0}^{\infty} \frac{(-1)^{\wedge} n}{2 n+1}=0.785398 \ldots
$$

This is the simplest expression for π known. Unfortunately it is also one of the slowest converging series

Consider next the integral-

$$
\mathrm{K}=\int_{x=0}^{1} 1 / \sqrt{1+x^{2}} d x=\sinh ^{-1}(1)=0.88137358 \ldots
$$

Expanding the radical as a Binomial Series we find-
$\mathrm{K}=\int_{x=0}^{1} \frac{d x}{\operatorname{sqrt}\left(1+x^{2}\right)}=\int_{x=0}^{1}\left\{1-x^{2} / 2+3 x^{\wedge} 4 / 8-5 x^{\wedge} 6 / 16+35 x^{\wedge} 8 / 128\right\} \mathrm{dx}=1-1 / 6+3 / 40-5 / 112+35 / 1152-\ldots$
On adding together the first five terms of the series, we find $\mathrm{K}=0.8940724206$.
As a final application of Newton's use of the Binomial Theorem consider the following integral and its numerical solution-

$$
\mathrm{L}=\int_{x=0}^{1} \sqrt{\frac{\left(1-x^{2}\right)}{\left(1+x^{2}\right)}} d x=0.711958659 \ldots
$$

To get an analytical approximation we first expand the radical as-

$$
1-x^{\wedge} 2+x^{\wedge} 4 / 2-x^{\wedge} 6 / 2+3 x^{\wedge} 8 / 8-3 x^{\wedge} 10 / 8+5 x^{\wedge} 12 / 16-\ldots
$$

Then, upon integrating and using the indicated limits, we find-

$$
\mathrm{L}=1-1 / 3+1 / 10-1 / 14+3 / 72-3 / 88+5 / 208=0.717236
$$

This result is accurate to just two decimal places. It again emphasizes the slowness of the convergence of a typical Binomial Expansion.
U.H.Kurzweg

April 30, 2021
Gainesville, Florida.

