CONSTRUCTING MODIFIED PASCAL TRIANGLES

It is well known since the time of Newton that one can expand $(1+\mathrm{x})^{\wedge} \mathrm{n}$ as-

$$
(1+x)^{\mathrm{n}}=1+\mathrm{nx}+\left[\frac{\mathbf{n (n - 1)}}{2!}\right] \mathrm{x}^{2}+\left[\frac{n(n-1)(n-2)}{3!}\right] x^{3}+\cdots=\sum_{m=0}^{n}\left[\frac{n!}{m!(n-m)!}\right] x^{\wedge} n
$$

Here the term in the square bracket is the binomial coefficient $\mathrm{C}[\mathrm{n}, \mathrm{m}]$. This coefficient can also be written in form of the standard Pascal Triangle-

					1				
			1		1				
		1		2		1			
	1		3		3		1		
1		4		6		4		1	

with the rows starting with $\mathrm{n}=0$. Also you will notice that $\mathrm{C}[\mathrm{n}, \mathrm{m}]$ equals the sum of the two elements lying directly above it in row $\mathrm{n}-1$ and $0 \leq \mathrm{m} \leq \mathrm{n}$. The sum of the elements in each row equals 2^{n}. Reading off of the triangle for $n=4$ we get the identity-

$$
(1+x)^{\wedge} 4=1+4 x+6 x^{\wedge} 2+4 x^{\wedge} 3+x^{\wedge} 4
$$

As first shown by us some five years ago (see https://www2.mae.ufl.edu/~uhk/MOREPASCAL)) one can replace $(1+\mathrm{x})^{\wedge} \mathrm{n}$ by the function $1 /[1-\exp (-\mathrm{x})]^{\mathrm{n}}$ to generate a brand new type of Pascal Triangle given as-

Here as n gets large the elements along a fixed row n approach the shape of a Gaussian. This fact allows one to use this triangle to get a good approximation for n ! at large n.

Lets begin with finding some additional Pascal like triangles. Many of these can be generated without having a guide function like in the above cases. One such array is-

Here we see that-

$$
C[n, m]=C[n-1, m-1]+C[n-1, m]+C[n-2, m]
$$

For the special case of $\mathrm{C}[6,3]=\mathrm{C}[5,2]+\mathrm{C}[5,3]+\mathrm{C}[4,2]$ we have $63=25+25+13$. Adding up the elements in a given row n leads to $S(0)=1, S(1)=2, S(2)=5, S(3)=12, S(4)=29$, $S(5)=70$. Unfortunatekly this produces no obvious general term $S(n)$.

Another Pascal like triangle is-

The individual elements are found (without need for a guide function) by noting that -

$$
C[n, m]=C[n-1, m-1]+C[n-1, m]-C[n-2, m-1]+1
$$

It is easy to find the element $\mathrm{C}[\mathrm{n}, \mathrm{m}]$ by noting the Cs are given by placing them at the four corners of a rhombus with the sum of the two vertical Cs greater by one to the sum of the two horizontal Cs. So C[14.5]=60 follows from-

```
45
50 54 or }50+54+1=45+6
```

Here the sum for the nth row equals-

$$
S(n)=[(n+1)(n+2)(n+3)] / 6=(n+3)!/(n!3!)
$$

One will get a parabolic and not a Gaussian shape when plotting $\mathrm{C}[\mathrm{n}, \mathrm{m}]$ over the range $0<\mathrm{m}<\mathrm{n}$ at large n . As an example for $\mathrm{n}=14$ we have the elements-

$$
\begin{array}{llllllllllllll}
15 & 28 & 39 & 48 & 55 & 60 & 63 & 64 & 63 & 60 & 55 & 48 & 39 & 28 \\
15
\end{array}
$$

which yields the structure-

PARABOLIC ELEMENT STRUCTURE FOR THE MODIFIED PASCAL TRIANGLE SHOWN

As a final Pascal like triangle consider-

Here $C[n, m]$ is obtainrd by summing the nearest three Cns above it and multiplying by two. So, for example, $36=2 * \mathrm{I} 1+16+1]$ and $256=2 *[36+76+16]$.
U.H.Kurzweg

December 28, 2020
Gainesville, Florida

