PROPERTIES OF SEMI-PRIMES

One of the more important quantities encountered in number-theory is the semi-prime $N=p q$, where p and q are prime numbers. This combination plays a critical role in modern day cryptography because it is extremely hard to factor when N gets large but very simple to construct when the prime components are given. Let us demonstrate this fact for the semi-prime $\mathrm{N}=1373 \times 3217=4416941$. The multiplication of the two primes readily produces the seven digit long semi-prime. However to find its factors is much more difficult. We can always take p to be less than $\operatorname{sqrt}(N)=2101.6519$ so that q will be somewhat greater than $\operatorname{sqrt}(\mathrm{N})$. Thus one can write -

$$
p=2102-a \quad \text { and } \quad q=2102+b
$$

, with a and b being unknown integers. This is equivalent to saying-

$$
a=[2102 b+1460] /[b+2102]
$$

Next by varying b from $b=0$ on up, we need 1115 trials until an all integer solution is found. The solution reads-

$$
[\mathrm{a}, \mathrm{~b}]=[729,1115]
$$

This result then yields the answer-

$$
p=2102-729=1373 \text { and } q=2102+1115=3217
$$

It took 1115 trial calculations moving one unit at a time to get this answer. Typically one can expect the trials to increase to about sqrt(N) before an integer solution for a and b is found. For large semi-primes of 100 digit or larger size used in public key cryptography it presently becomes impractical to test for integer p and q for such large semi-primes thus making modern day cyber security safe to use.

It is our purpose here to find additional properties of semi-primes and then to use this information to speed up the factorization process from the brute force approach demonstrated above.

We begin by noting that the average value of p and q must equal-

$$
S=(p+q\} / 2=[\sigma(N)-1-N] / 2
$$

, where the sigma function $\sigma(N)$ for the semi-prime N reads $\sigma(N)=1+p+q+N$. One can next write-

$$
\mathrm{p}=\mathrm{S}-\mathrm{R} \quad \text { and } \quad \mathrm{q}=\mathrm{S}+\mathrm{R}
$$

, with R given by the radical-

$$
\mathrm{R}=\mathrm{sqrt}\left[\mathrm{~S}^{\wedge} 2-\mathrm{N}\right]
$$

Here R represents half the distance between p and q. Once one knows the value of $\sigma(N)$ and hence S, the radical will be known with the prime factors becoming-

$$
[p, q]=\mathrm{S} \mp \operatorname{sqrt}\left[\mathrm{~S}^{\wedge} 2-\mathrm{N}\right]
$$

Fortunately the value of sigma(N) is given by most advanced mathematics programs for Ns up to about forty digit length. Thus, for the semi-prime discussed above, where $N=4416941$, our computer yields in a split second that $\sigma(N)=4421532, S=2295$ and $R=922$. Thus we have the factors-

$$
\mathrm{p}=1373 \text { and } \mathrm{q}=3217
$$

This result is obtained at only a very small fraction of the time it takes to find p and q by the above brute force search approach.

We notice that any semi-prime N, when its factors are both greater than three, must have the form-

$$
N=6 s \pm 1 \text { with } s=1,2,3, \ldots
$$

This means that $N \bmod (6)=1$ or 5 without exception. The seven digit long semi-prime $\mathrm{N}=4416941$, discussed above, has $N \bmod (6)=5$. This fact allows us to state that $p=6 n \pm 1$ and $q=6 m \mp 1$. It agrees with the actual results $p=1373=6(229)-1$ and $q=3217=6(536)+1$. These results also mean that all prime numbers greater than three must have the form $6 n \pm 1$.

In the past decade or so we have come up with several new properties concerning semi-primes. One of these is the Number Fraction which for semi-primes reads-

$$
f(N)=[\sigma(N)-N-1] / N=(p+q) / p q
$$

It has the interesting property that $f(p)=f(q)=0$ for he primes p and q. For $N=4416941$ we find $f(N)$ equal to-

$$
f(N)=4590 / 4416941]=0.00103918
$$

For the small semi-prime $N=77$, where $\sigma(77)=1+7+11+77=96$, we find $f(77)=(96-78) / 77$ =18/77=0.233766 .

One also has the identities-

$$
S=(p+q) / 2=N f(N) / 2 \quad \text { and } \quad \sigma(N)=1+N+N f(N)
$$

One can estimate the value of $\sigma(N)$ as $1+N+2 \operatorname{sqrt}(N)$. For the $N=77$ case this estimate is $1+77+18=96$ which is the exact value while for $\mathrm{N}=4416941$ we get the estimate-

$$
\sigma(N) \approx 1+N+2 \operatorname{sqrt}(N)=1+4416941+4203=4472114
$$

Here the exact value is $\sigma(N)=1+1373+3217+4416941=4421532$ and thus about one percent in error.
Here is a list of five representative semi-primes and their properties-

Semi-prime N	p	q	S	$\sigma(N)$	R
77	7	11	9	96	2
216409	379	571	475	217360	96
4416941	1373	3217	2295	4421532	922
110764567	8231	13457	10844	110786256	2613
28287742959451	3678923	7689137	5684030	28287754327512	2005107

We see that S always equals the mean value of p and q while R is half the distance between p and q. Also $\sigma(N)$ lies only slightly above N with $p=S-R$ and $q=S+R$. In addition we have $N=S^{\wedge} 2-R^{\wedge} 2$. The last allows for the existence of a right triangle with a hypotenuse of S and sides sqrt(N) and R. Here is this right triangle drawn for $\mathrm{N}=216409, \mathrm{p}=379$ and $q=572$ -

Using the above formulas makes the factoring of semi-primes trivial for all Ns small enough for my computer to give a value for sigma(N). With my MAPLE program, the largest N for which $\sigma(\mathrm{N})$ is readily found has about fortyt digit length. More research is needed to find a way to determine the sigma function for Ns greater than this. Should such a search be successful, the security of public key approaches in public key cryptography will become obsolete. Note that if p and q are given, $\sigma(\mathrm{N})$ always known from its semi-prime definition $1+p+q+N$.

U.H.Kurzweg

June 8, 2021
Gainesville, Florida

