ROOTS OF INTEGERS USING THE DIOPHANTINE EQUATION $y^{\wedge} \mathbf{2 = 1 + (A x) \wedge 2 ~}$

INTRODUCTION:

If one looks at the non-linear Diophantine Equation (also known as the Brahmagupta Equation) $y^{\wedge} 2=1+(A x)^{\wedge} 2$, we see that it has integer solutions for certain values of A. Rewriting the equation as a Biharmonic Series, we have the equivalent form-

$$
y=A x\left\{1+\frac{1}{2(A x)^{2}}-\frac{1}{8(A x)^{4}}+\frac{1}{16(A x)^{6}}-\frac{5}{128(A x)^{\wedge} 8}+\frac{7}{256(A x)^{\wedge} 10}-\frac{21}{1024(A x)^{\wedge} 12}+\right\}
$$

provided that $A x \gg 1$. Alternatively, we can re-write the equation as the continued fraction-

$$
y=A x+\frac{1}{2 A x+\frac{1}{2 A x+\frac{1}{2 A x+\frac{1}{2 A x+}}}}
$$

It is our purpose in this note to show how the above expansions lead to some interesting forms for square roots of integers.

We begin by letting $A=\operatorname{sqrt}(N)$ and then rewrite the above Binomial Expression as-

$$
\operatorname{sqrt}(\mathrm{N})=\left(\frac{N x}{y}\right)\left\{1+\frac{1}{1!2\left(N x^{2}\right)}-\frac{1}{2!2^{2}\left(N x^{2}\right)^{2}}+\frac{1 \cdot 3}{3!2^{3}\left(N x^{2}\right)^{\wedge} 3}-\frac{1 \cdot 3 \cdot 5}{4!2^{4}\left(N x^{2}\right)^{4}}+\right\}
$$

This represents a rapidly convergent series for sqrt(N) when the integer solutions $[x, y]$ of the accompanying Diophantine Equation have large values.

SQUARE ROOT OF TWO:

We begin with $A=s q r t(2)$. Here the original Diophantine Equation reads-

$$
y=\operatorname{sqrt}\left(1+2 x^{\wedge} 2\right)
$$

The obvious base solution is $\left[x_{0}, y_{0}\right]=[0,1]$. This is followed by $\left[x_{1}, y_{1}\right]=[2,3]$ and $\left[x_{2}, y_{2}\right]=[12,17]$.Higher integer solutions follow by carrying out the search program-

$$
\text { for } x \text { from a to } b \text { do }\left\{n, \operatorname{sqrt}\left(1+2 x^{\wedge} 2\right)\right\} o d ;
$$

Here a and b are chosen by making use of the fact that when x gets large the ratio x_{n+1} / x_{n} equals $3+2 \operatorname{sqrt}(2)=5.8284272$. A table for $\left[x_{n}, y_{n}\right]$ going from $n=1$ through $n=12$ follows-

12	17
70	99
408	577
2378	3363
13860	19601
80782	114243
470832	665857
2744210	3880899
15994428	22619537
93222358	131836323
543339720	768398401

Rewriting the above series expansion for $A=\operatorname{sqrt}(2)$ using any $[x, y]$ combination in the above table produces-

$$
\operatorname{sqrt}(2)=\left(\frac{2 x}{y}\right)\left\{1+\frac{1}{4 x^{2}}-\frac{1}{32 x^{4}}+\frac{1}{128 x^{6}}\right\}
$$

for a four term Binomial Expansion. Evaluating yields-
$\operatorname{sqrt}(2) \approx 1.414213562373095048801688724209698078569671875376948073176679737990732478$
Thus is accurate to 73 places. The rate of convergence will be less if one takes one of the lower values of [x, y].

SQUARE ROOT OF THREE:

We consider next $A=\operatorname{sqrt}(3)=1.732050808 \ldots$. . To get a rapidly convergent series for this root, we first construct an $[x, y]$ table using the search routine-
for x from a to b do $\left\{x\right.$, sqrt($\left.\left.1+3 x^{\wedge} 2\right)\right\} o d ;$
This table begins with $\left[x_{0}, y_{0}\right]=[1,2]$ followed by $\left[x_{1}, y_{1}\right]=[4,7]$ and $\left[x_{2}, y_{2}\right]=[15,26]$. We expect the ratio x_{n+1} / x_{n} to approach $2+\operatorname{sqrt}(3)=3.73205$ and y_{n} / x_{n} to approach sqrt(3). Carrying out the search we find the following table-

x	y
1	2
4	7
$(15$	26
56	97
209	362
780	1351
2911	5042
10864	18817
40545	70226

151316	262087
564719	978122
2107560	3650401

Letting $x=2107560$ and $y=3650401$, we find taking just the first four terms in the Binomial Expansion, that-
$\operatorname{sqrt}(3) \approx(3 x / y)\left\{1+1 /\left(6 x^{\wedge} 2\right)-1 /\left(72 * x^{\wedge} 4\right)+1 /\left(432 *^{*} x^{\wedge} 6\right)\right\}=$
1.7320508075688772935274463415058723669428052538103806
accurate to the first 53 digits shown.

CONCLUDING REMARKS:

We can also use the continued fraction-

$$
y=A x+\frac{1}{2 A x+\frac{1}{2 A x+\frac{1}{2 A x+\frac{1}{2 A x+}}}}
$$

, where $A=s q r t(3)$, to get an estimate for this root. Expanding out the first three terms, using the earlier values for x and y, yields the cubic-

$$
4(A x)^{\wedge} 3-4 y(A x)^{\wedge} 2+3(A x)-y=0
$$

Solving we find-

$$
A=\operatorname{sqrt}(3) \approx 1.7320508075688772935274463415058723669428
$$

good to 41 places.
We have shown in the above that one can obtain highly accurate approximations to the square roots of any positive integer N using the higher n solutions of a non-linear Diophantine Equation. Detailed calculations have been carried for both sqrt(2) and sqrt(3). In general one has that-

$$
\operatorname{sqrt}(\mathrm{N})=\left(\frac{N x}{y}\right)\left\{1+\frac{1}{2 N x^{2}}-\frac{1}{8 N^{2} x^{\wedge} 4}+\frac{1}{16 N^{3} x^{\wedge} 6}-\frac{5}{128 N^{4} x^{\wedge} 8}+\right\}
$$

with $[x, y]$ being higher integer solutions of $y=\operatorname{sqrt}\left[1+N(x)^{\wedge} 2\right]$.
U.H.Kurzweg

May 3, 2021
Gainesville, Florida

